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[credit for course materials: Prof. Jan von Delft]

Gamma-Lambda Notation, iTEBD, DMRG I

(l\ ‘(‘\‘r\(\: l.(
Vidal’s I'A notation
[Vidal2003, Schollwock2011 Sec 4.6]
We have studied the usual bond-canonical form of MPS: g Z) 4 g
B, &) S S TR
- \
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(S“ 6o Cu, O
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Choose S diagonal, and call it /\ (following Vidal):

|q7 ‘”‘7(&\ 7@,__/\((3

In this format, the reduced density matrices of left and right parts are diagonal, with
N

eigenvalues (/\“E)S:
P = T{R Y ¢4l = ? lD()Q(L( C¢)> <l
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Vidal introduced a representation for an MPS in which a Schmidt-decomposition can

be directly read off for each bond:
¥ AC!) rcn 45-‘7 v-) rCN)

(1) = mP'*rc T — :_1——_’\0—1

where /\ ( L') is a diagonal matrix consisting of Schmidt coefficients wrt to bond ,Q

l.e.
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Any MPS can be brought into I'A form. Proceed in same manner as when left-

normalizing:

)= (), (0 mo)
A TPPY (t\("l

T 11

Successively use SVD on pairs of adjacent tensors:
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Note: in numerical practice this involves dividing by singular values,
) /\Cz 1) AC 0

So: first truncate states for which /\ KA

()

-

Even then, the procedure can be numerically unstable, since arbitrarily small singular

values may arise.

? C[ /l.‘\r(l] m&] 0 A
So, truncate states for which (say) /\ [1~l) w (] 6/5

Similarly, if we start from the right, SVDs yield right-normalized 6 tensors, and we
= 47 ok I kb tyly
Ly
L’f /\CLJ

So, relation between standard bond-canonical and ‘canonical ’'A form’ is:

149 =

can define:
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Infinite Time-Evolving Block Decimation (iTEBD)

[Vidal2007, Schollwock2011, Sec 10.4]

Goal: ground state search for infinite system while exploiting translational invariance.

We will use Vidal’s {\/\ notation but everything can be translated into A&notation.

a

—

q
e (49 «13)

Basic idea: ‘imaginary time evolution’: 'l‘m

f =
Reason: high-energy states die out quickly (if ground state is gapped):

n A lgé
e:é“ = i e_’ﬁu [0‘360(1 @-\- Q/—, ’ )3745'
A o~

| vynd

stk

1. Trotter decomposition of time evolution operator
[Schollwock 2011, Sec 7.1.1]

N A\
General: write Hamiltonian as ‘:i - i Ml - Ho t Eli
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Then all odd terms mutually commute, and all even terms mutually commute:
~ n
. (
C“C/ l'\’/) =0 (é Q/I NGO é,”\ d(u of Crtn

Divide time interval into L slices: ﬂ L t

4}M'L(/V

_pH Toli e o
e = CC LH) [Qt(u +Hc))
Ldﬂ,t")o . Q:t tf, C:Lﬂt, . 0 (ﬂ-)] ‘first order Trotter approx’

L
A ‘Second order Trotter approx
T, M -IZH y )
(Vg QR v o )

- , , , . (
Exploiting commuting properties of odd/even terms, each exponential can be I\»; T z’\ll'-[ .

expanded separately without further approximation:
J, . b b hs 2
-U - .C -L - =2
~LQ ¢ _ ,Ln'\ vLLl Y -y _ u u
e - € ¢ x ¢ - Yy - %)
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it

So, when applying@, to | q) , We can successively apply all odd terms, then

truncate, then all even ones, then truncate, etc.

— &

o o
y o | =TT

In MPO notation:

-—t“"v C:Céo %f? _

f

since ?( factorizes, odd bonds have dimension 0
¢ Wo = '

since Qa factorizes, even bonds have dimension 0 W, e
All of this can be done for finite chain of length N . But a simplification occurs for N ALY

Then we can exploit translational invariance:
M 0 ML Ma M(, Nr M C
L1 0[]
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Adopt a two-site unit cell (no left- or right- normalization implied).
Step 1: time-evolve ‘odd bond’:

[odd: first site odd, second is even] A

Mo M -Thy rohse Suo

I = Y

Step 2: time-evolve (updated!) even bond:

[even: flrst site even second site odd] (¢ 5“’{"’

Mo /ERL ;';t, ﬁo

(Vo
oy
(\399

=S

Iterate until convergence! (To discuss details, we will use f‘ /\ notation.)

iTEBD is a ‘power method’: the projector to the ground state is constructed as an
q

increasing number of powers of T u ¢t .-C H6

e e

This is to be contrasted to DMRG ground state search, which is a variational method.
Main advantage of iTEBD: costs not proportional to system size, hence cheaper.
Main disadvantage: loss of orthogonality due to projection without explicit

reorthogonalization.
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2. iTEBD: Explicit formulation
[Vidal 2007, Schollwock2011, Sec 10.4]

Ao Ae

Use two-site unit cell, —[——l- , repeated periodically,

A, A
(kﬂ: (J 'Lr) |g)( ’?'

0 e
and express it in{" /A notation: A\ b /\L‘ro ' AC = Ao re/
/\,A;” géc,_
4y = Nen AR A AN
T
0, 0c

[to avoid cluttering, 0~ indices on P, A are not displayed but implicit]
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Each iTEBD iteration involves two steps: R
A _ _C - _
Step 1: Time-evolve odd bond using u° = € p ‘(
/\(/ (lb /\p Q llc

I it A db 9 4p V
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T Oc 22 v 4 sLN
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Now, Ub is projector (not unitary) hence reduces norm. Thus, Ao is normalized
ni nd: r @ a4 "
to unity by hand A, /\D /.Sc Ab )
— (23 pL
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o —— —o—
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This is update of odd bond. The updated MPS now has the form

a
A

o - a &
‘C—f7 < Tr Ao A(, A»AL"-
o

“«a 2« A &
Updated bond energy:

~ G = A =
Rowy = -‘L“(h" Me\ -

) —L
f;n—r:‘m) {Urtftfj 6( e
¢t chan, A, €LV

C—

Updating odd bonds lower '/\6 , slightly raises l'\

(‘odd bond happy, even bond slightly unhappy)

N -
’ The | AR
Step 2: Time-evolve even bond, using = -
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b w o« - - A SO ——et §
r z ISD /\b *\
0

Che)



MCE 201, APh 250/Minnich Module 5 Page 12 of 23

This completes update of even bond. Updated MPS now has the form
& ™ (=9 & L &
|99 = TUIEY A MK A ..
o

Compute updated bond energy using same equation as before but with o <-> e.
\

‘ —
As before, updating even bond lowers ht , slightly raises ‘\D .
A a

Now iterate (apply ub , then UL , etc) until convergence (monitor ground state

energy).
Remarks: “ (
L v

1. Computation of /\o //\,6 can become unstable because singular values can be

small. Thus: truncate by discarding smallest singular values f (0 , then invert.

2. Note that A, , is left-normalized but AL = A‘ '{‘A”‘ is not!
w - _’(
C P A
o -
At Aé - Ae (éo /lc
‘Loss of orthogonality’. This causes problems when computing expectation values. For

example, odd bond energy, given by:

=2

End P~ N D
AL aﬁ&ﬁ-\)a'ezo O ~~ﬁ&

o le ;Q: ae S
AT/

does not reduce to earlier expression because zippers cannot be closed from left and

=
B
=
f)

right. Hence our evaluation for energy involves an approximation.

Summary remarks on iTEBD:

Main advantage of iTEBD: costs not proportional to system size, hence comparatively
cheap. Main disadvantage: loss of orthogonality due to projection, without explicit

reorthogonalization.
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3. Improvements

1. Hasting’s trick

Performing iTEBD involves inverting a singular value matrix, which could lead to the
numerically unstable process of dividing by small singular values (even after
truncation).

Hastings [Hastings2009 Sec IIA, Schollwock2011 Sec 7.3.2] reported a method to
avoid this division by a series of contractions and SVDs. For this class | just want to
make you aware of it; due to time constraints | will not go through it.

2. Orthonormalization

Correlators via transfer matrix [Schollwock2011, Sec 10.5.1]

Recall that an infinite, translationally invariant MPS with two-site unit cell, expressed in

the form

is called ‘canonical’ if are left-normalized and are right-normalized.
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Correlators can then be computed using transfer matrix methods:

~ A Ao - AL AO _ Ag . QO . 5@ . ﬂb &Ao Se BD X 3& B°‘ )
<oy Oreyy = 7 i T T T
. Om" T 1T 1 D[e'l‘ + 1

close zippers

Problem: iTEBD (including Hastings’ version) yields infinite MPS that are not in
canonical form, due to loss of orthogonality. It is possible to restore orthogonality
(albeit at the cost of inverting singular value matrices).

[Orus2008, Schollwock2011 Sec 10.5]

R VR VR ) Y7y

canonical form
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DMRG lI: tDMRG, purification for finite temperature

1. Time-dependent DMRG (tDMRGQG)
[Daley2004, White2004]

Invented in 2004 by Daley, Kollath, Schollwock, Vidal, and independently by White,

Feiguin. P(écc&J (TER N (e )

Goal: to compute
) = & (¢

Time-evolution operator for nearest-neighbor interactions

Even-odd deco,r:‘nposition of Hamiltonian:

A A A a Q
P ~A H; ilﬁ\ :Ho{'(—fc

. L 4 ¢ 4 o—0- L
kY g 5 ¢
—— o
0 A —
['\[ lﬂ; L\{'

(r

Trotterize: +

‘CN+
) N, . (C.;tgc -(‘1;\'{]\‘
U ) =

~ < a N
gt ( JC(H0+HJ\) “ 5
e = \¢ A
_&
+0(t ) )
Time-evolution protocol [Schollwock2011, Sec 7.1-7.3]

0 - O, W J§@A)
Construct MPO representations for ao f'ﬂ( , compute |“t(‘[~—f—t‘) - u¢ Ué
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(i) MPO: A \
0, s Tt -

g d
d
d d ' ( (
Oo‘ :)‘ b wfl VU\\}MQ
RN a, M o

(i) Evolve

N»(HC» :ao HHD - JL__L 4...-;;.[4

D) ! [4

(iii) Compress: either ‘variationally’ (global) or ‘bor}g by bond’ (local)

Variational compression: First apply full MPO for Ub to entire chain. Then variationally

minimize ‘L
“ [t‘t(t“( {'\7 = (Ltcw-/rtsn.L?“

o C—

0d
This yields optimal (in variational sense) way to compress lLt(-up?‘O IL(CM’I(“C“?

with given bond dimension.



MCE 201, APh 250/Minnich Module 5 Page 17 of 23

Explicitly: d A*A" ,i\ A Af/i(’r Ad
A, Cempesea |4 - A Moo Yoo,
‘(*("*} A A A A A A A =0
I - \ )
= A L'
G gt A A A AL\
— R

L “
(LARA= XA

/\
Sweep back and forth until overlap(‘-(c‘qa no longer changes. Then apply U(/ .

Bond by bond compression
(\

Apply Ub to bond 1-2, = | g
\ !

/

Suv
Cvo
“‘Nn(,..h 'l (v -\“,b

- -

then reshape, SVD, truncate,

repeat for bond 3-4, 5-6, etc

This approach keeps bond dimensions low throughout, hence is cheaper. However,
some interdependence of successive truncations may enter in, hence variational

compression is cleaner.
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The difference between variational and bond-by-bond compression becomes
negligible for sufficiently small T | because then the state does not change much

during a time step anyway, thus the effect of truncation is less.
n o qQ
With bond-to-bond compression, there is no need to split H - H, € GL ( u :ue Ua

Instead, Trotterize as follows:

-HT _‘h 4 C -h T
A e Wt + ole)

S

[First order Trotter]

~ N
c . ¢ '\ - .
hya Tl O au_l tf ik, Tl —hiu

e (M c-‘ e C e
+0()
o econd orderroner R
Error analysis |
Z’Iﬁﬂv\ (error per step) X (# of steps) = _CI\H ‘ t _ 'Cﬁ‘i‘

T

linear in time; controllable by reducing f

Truncation error due to truncation of bond dimensions:

€

Z“W v < C , grows exponentially!
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Reason: under time evolution, state becomes increasingly more entangled, on a bond

entanglement entropy is 5 S:"‘ gé . = (SJ\./\)( [4( Ql)

R o

This is maximal if all singular values on bond are equal,

(g'\‘sk: _(5 9 gE S‘A‘LD

If Hamiltonian H “") is changed abruptly (quench) such that global energy changes

S(*)é S(()) +ct

extensively, then

[For less dramatic changes (e.g. local perturbation), entanglement growth is slower but

still significant.] S('f’)
Bond dimension needed to encode entanglement entropy SE is given by 0(‘(') 2 )\

If, however, bond dimension 0 is held fixed during time evolution, errors will grow

exponentially.
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A quantitative error analysis has been performed by [Gobert2005] on the exactly

solvable XX model:

[Gobert2005]

B X X J ¢y
Hxx = T% Ste1 Steny * St Sum «

L=100, dt = 0.05
\ll

rvn s

=)

(S, ceviauor) = énoy
3
8

J‘ 1 They performed quench, with initial state

10 03: - ‘

04 e ]

107°% y, g . = x : ] (‘q 73—':0 = ,ll T 11 1‘ : l ‘L l l

10795 - % 30 s . |

~06! m=3 ;~20 1 . .

m_w' _ S . A For >0« T#o ,domain wall widens...

20 30 40 50

10 08] i i "
0 10 20 30
bk fry, oo
Lan 22T 9F 10

FIG. 6. Magnetization deviation AM(7) as a function of time for
different numbers m of DMRG states. The Trotter time interval is
fixed at dr=0.05. Again, two regimes can be distinguished: For
early times. for which the Trotter error dominates. the error is

04\ —
: domain wall

~.broadens
withtime

s

slowly growing (essentially linearly) and independent of » (regime =0
A): for later times, the error is entirely given by the truncation error. domain wall
which is m-dependent and growing fast (almost exponential up to at time t=0
some saturation: regime B). The transition between the two regimes

occurs at a well-defined “runaway time™ rz (small squares). The ‘ |
inset shows a monotonic, roughly linear dependence of 7z on m. i T

2. Finite temperature: purification
[Verstraete2004, Schollwock2011 Sec 7.2.1]

General quantum-mechanical density matrix for a mixed state,

Qo M
P~ 5 [M?P /0 v f<\> |
A T /14«/51‘(4

has three defining properties:

:\-‘. N
(1) Hermiticity: /D = /}

ng v
(2) Positivity: Eigenvalues are non-zexe

q -
/)Jh).wt.‘q - % '0(7/' /)‘ péx‘
30
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(3) Normalized Tf /0“ - ‘ = g /‘ = l
i a £ T (I’Qg 3
Expectation values: < 6 7 - Tr( ﬁ 0 ) [ (

Tr(loa)
it j;‘ b mediad

Purification

1
Can we represent ‘j) in terms of a pure state?

Yes: double Hilbert space by introducing an ‘auxiliary’ state for each physical state,

and define ‘purified state’:

14) = 2 ), [0, Ip’ € M, @?‘I,o
“« 1

LR \}1’1
This can be viewed as a Schmidt decomposition of a pure state in doubled Hilbert

space.

Norm vyields trace: J_ éd \ (0‘ (X) '0()’ If_‘:

2 2 A
:‘ d
414) = mgc\ _ Z/)o\ =Te pp
Tracing out auxiliary state space from |\'\7L‘” (@ pure DM in doubled Hilbert

o
space) yields physical density matrix Pf (@ mixed DM in physical Hilbert space)

Te, €Yl = 2 2 (P14 I3 I o) et

"

Sﬁ « g*f

= Z ‘o()/ /’o& ,<°“ < fl\/

(8
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Purified-state expectation values in doubled Hilbert space yield thermal averages in

/,“( « ‘ (4 IL@O/)’J) {0‘7&(

physical space

4| T, Of“‘f7
= Z ém\6‘0‘7 o = Tt /’/0/7<0/>

A

. | §)
Ifj) is not normalized, use (M7 Tr /’: / :< A 7
{4147 py

Thermal density matrix

Thermal density matrix is described by

n ,ﬁﬁ/ -6&&
A S VAN

Not normalized: (l;é
DS e x
- c
Tr,, VL. ~

Purified version: _ ﬁé‘,\ A ,ﬁﬁ /A _ [
l(:Dé - % |0()a lo<7/ gw = e I' 2\(77,1“'7(’

A
19 = [ lap - 2'“741"7’) o) (),
7

G

= product state, with each factor describing maximal a-p entangled at site Q

N
=T g
1<\ G)Q(FHA



()

MCE 201, APh 250/Minnich Module 5 Page 23 of 23

-

Note: at ' ':W , i.e. /)’D we have \LU?(?,? (all states[(;\) are equally likely)

Protocol for finite-T DMRG calculations Z ](V,\] fry

0 g, on
Start from pure l('fo7 - ‘{\}/‘; i 16;’,\ I‘ o
'y fre

boal dim = l

product state in 0

doubled Hilbert space:

Perform imaginary-time evolution over a ‘time’ ﬁ/)\ , acting only on physical space:

¢ Y
. 15@//1\ - A 4_ R /L

= 1) FE———F e
thttuite b /[\yx‘w{ lys

For thermal averages, trace out auxiliary space:

; IL,0 0¥
<OCa)f> - <(fp( /[ ﬁ7




