
Caltech/ Physics on near-term QC/Minnich Lecture 8, Spring 2019

Lecture 8: Parity basis and Bravyi-Kitaev transform
Reading: Seeley, Richard, and Love JCP (2012)

1 Parity basis
The JW transform successfully transformed fermions to qubits, but it certainly has some drawbacks,
namely that it turns local operators into nonlocal strings that result in many entangling gates being
required to implement a given term. We would like to explore other encodings that may not have
this undesirable property. The parity basis is an alternate encoding that will solve the issue with
the JW transform at the expense of creating another nonlocal string associated with creation and
annihilation operators. But we will see that it is a step on the way to the Bravyi-Kitaev transform
which does require asymptotically more local strings than JW or the parity transform.

Recall that the problem with the JW transform was that we needed to figure out the parity of a
state (to count minus signs) which then required us to determine the occupancy of a whole string of
states. Wouldn’t it be nice if we could somehow store the parity in a more local way? Then getting
parity for an operator would only require a local operation.

This is precisely the idea of the parity basis, which stores the parity of all orbitals up to orbital
j, e.g. orbital j stores pj =

∑j
s=0 fs modulo 2. We can define a map between the parity and

occupancy bases as:

pi =
∑
j

[Πn]ijfj (1.1)

where [Πn]ij = 1, i ≤ j, and 0 otherwise. In other words, it is an upper diagonal matrix
(including in the diagonal) filled with ones, and zero everywhere else (note the indices of the matrix
are references from the bottom right of the matrix with i increasing horizontally from right to left,
and j increasing vertically to be consistent with the orbital numbering from right to left in the ket).

Now, getting phase is easy because each qubit holds the parity, and parity determines the phase
factor! We can get parity relevant for qubit j simply by applying Z to qubit j − 1. The problem
now is that adding or removing particles from the states is hard since each qubit does not store
occupation. As an example if qubit j − 1 is |0〉, then the creation operator is unchanged. But, if
qubit j − 1 is |1〉, then j needs inverted parity to represent an occupied state (since 1 + 1 = 0 in
mod 2 arithmetic). So a creation operator is now Q− rather than Q+. So now we have a two qubit
operator on j and j − 1:

P±j ≡ Q±)j ⊗ |0〉 〈0|j−1 −Q
∓
j ⊗ |1〉 〈1|j−1 (1.2)

=
1

2
Xj ⊗ Zj−1 ∓ iYj ⊗ Ij−1 (1.3)

But that’s not the only problem. Remember that the qubits at sites > j store the parity for the
other qubits. Those all need to be updated, meaning we once again have a non-local string. It is
just like a JW string except it flips all the qubits, so it is an X string. The creation and annihilation
operators in the parity basis are then:

a+j ≡
←−
X j+1 ⊗ P+

j (1.4)

aj ≡
←−
X j+1 ⊗ P−j (1.5)

1

https://aip.scitation.org/doi/10.1063/1.4768229

Caltech/ Physics on near-term QC/Minnich Lecture 8, Spring 2019

where
←−
X i ≡ σxn−1 ⊗ ...⊗ σxi . So we still have a nonlocal string.

2 Bravyi-Kitaev (BK) transform
2.1 Introduction
The BK basis is a middle ground between the JW and parity bases. Generally, we need two pieces of
information to simulate fermionic operators with qubits: occupation of the target qubit and parity
of orbitals with index less than the target index. In the occupation basis, occupation is local but
parity is non-local. In the parity basis, occupation is nonlocal but parity is local.

The BK basis lets both the occupation and parity be nonlocal but requires strings of length
O(logN) rather O(N) as in the parity and occupation bases. It works in the following way. Even
j qubits store occupation, while odd j qubits store the parity of a certain set of adjacent set of
orbitals with index < j.

We can again define a map βn that takes the representation from the occupation number basis to
the BK basis: bi = [βn]ijfj . The map can be defined recursively in the following way. Let β1 = [1].
Then

β2x+1 =

β2x
1 1 ...
0 0 ...
0 0 ...

0 β2x

 (2.1)

With this construction, we have a balance between the non-locality of the other bases. The
parity of indices < j are stored in a few partial sums, the number of which ∼ O(log j) ≤ O(log n).

2.2 Representing operators
The hard part is to determine fermionic operators in the BK basis. We are not going to put in all
the details here - they are presented fairly clearly in Seeley et al referenced at the top, although
with a few errors that we point out here. Here is a sketch of the main considerations. There are 3
sets of qubits that we need to construct operators:

1. Parity set: those qubits that store the parity of all orbitals < j

2. Update set: those qubits that must be updated when the occupation of orbital j changes

3. Flip set: whether qubit j has the same parity as orbital j (and thus whether we should use a
creation or annihilation operator on the qubit to represent adding a particle to the orbital)

Let’s start with the parity set. For arbitrary j, which set of qubits tell us about the phase factor
for an operator on orbital j? The parity of this qubit set gives us the parity of all orbitals with
index < j, and so we define P (j) as the parity set. We can figure out this set by mapping the BK
basis to the parity basis using the two maps we already wrote down: we can first go from the BK
basis to the occupation basis using β−1, then from occupation to parity using Π′ (defined below).
The overall map is:

pi =
∑
k

[Π′nβ
−1
n]ikbk (2.2)

Here Π′n is the parity matrix defined earlier but with zeros on the diagonal since we need only
the parity of orbitals less than j. This transform is in ERROR in the Seeley paper, which uses the

2

Caltech/ Physics on near-term QC/Minnich Lecture 8, Spring 2019

same matrix as is used for the parity basis. The nonzero entries to the right of the diagonal indicate
which qubits are needed to compute the cumulative parity to j. I give an example in class which is
also given in the Seeley paper.

Next, consider the update set U(j), defined to be the set of qubits other than j that must be
updated when the occupation of orbital j changes. This set is therefore also the set of qubits in the
BK basis that store a partial sum including orbital j. Any such qubit is defined to be in the set
U(j). Since even indexed qubits store only the occupation of orbital j, the update set only includes
odd indices.

We can figure out this set using the map from the occupation number basis to the BK basis,
which is just β. Since bi =

∑
ij [βn]ijfj , the columns of this matrix indicate which BK qubits store

a particular orbital. More precisely, non-zero entries of a column above the diagonal tell us which
qubits other than j must be updated if the occupation of j changes.

Finally, we have the flip set F (j), which contains the qubits that store the parity of occupation
numbers other than fj in bj . We need this information to tell us if qubit j has the same or inverted
parity with respect to orbital j. As before, since even-indexed qubits only store the orbital with
the same index, the flip set does not contain qubits with even indices, e.g. we know qubit j has
the same parity as orbital j. We can get the flip set by using the map from the BK basis to the
occupation number basis, fj =

∑
k[β
−1
n]jkbk. For row j, the non-zeros entries to the right of the

diagonal tell us which qubits other than j determine the occupation of qubit j.
With these sets defined, we now need to map the creation and annihilation operators to the

BK basis. Unlike in the occupation number and parity bases where we focused on the properties
of individual qubit states, for the BK transform we focus on the parity of subsets of orbitals and
qubits. To start, define even and odd projectors for parity as

ES =
1

2
(I + ZS) (2.3)

OS =
1

2
(I − ZS) (2.4)

where ZS is short-hand for applying the Z gate to all qubits in an arbitrary set S. Let’s look at
the case where j is even. Q± should act on qubit j, as in JW, since even qubits store orbital j. We
then have to determine the parity of occupied orbitals < j and update qubits with index > j. To
figure out parity, we act with σz on all qubits ∈ P (j) giving ZP (j). The size of this set is O(log j).

Next, we need to update the Update set: since j is now occupied, we need to update the partial
sums containing fj . We do that by applying σx to qubits in U(j) giving XU(j). In the end, we have

a†j = XU(j) ⊗Q+
j ⊗ ZP (j) =

1

2
(XU(j) ⊗Xj ⊗ ZP (j) − iXU(j) ⊗ Yj ⊗ ZP (j)) (2.5)

aj = XU(j) ⊗Q−j ⊗ ZP (j) =
1

2
(XU(j) ⊗Xj ⊗ ZP (j) + iXU(j) ⊗ Yj ⊗ ZP (j)) (2.6)

These are the operators for j even. Now let’s consider j odd. In this case, qubit j stores the
partial sum of occupation numbers, not the occupation. The state of qubit j is representing either
the occupation (if the parity of other orbitals < j are 0) or the opposite of occupation (if the parity
of other orbitals is 1). Therefore, which Q+ or Q− we need to use for creation or annihilation
depends on the parity of the flip set, which we defined above. If the parity of F (j) = 0, we have the
normal creation and annihilation operators, e.g. Q+ creates a particle. If the parity of F (j) = 1,
then we have the opposite: Q− is the creation operator. Therefore, we can define an intermediate
creation/annihilation operator as follows:

3

Caltech/ Physics on near-term QC/Minnich Lecture 8, Spring 2019

Π±j = Q±j ⊗ EF (j) −Q∓j ⊗OF (j) =
1

2
Xj ⊗ ZF (j) ∓ iYj (2.7)

where the minus sign is accounting for the fact that parity is 1 by definition for the odd parity flip
set and therefore we need the minus sign for the phase factor.

Now, there are still generally qubits in the parity set P (j) that are not in the flip set F (j). To
get the final parity of the operator we need only those in P (j) but not in F (j) since we already
accounted for the phase factor above. Therefore, we define a remainder set R(j) ≡ P (j) \ F (j) to
which the parity operator Z should be applied. The final creation and annihilation operators for j
odd are then:

a†j = XU(j) ⊗Π+
j ⊗ ZR(j) =

1

2
(XU(j) ⊗Xj ⊗ ZP (j) − iXU(j) ⊗ Yj ⊗ ZR(j)) (2.8)

aj = XU(j) ⊗Π−j ⊗ ZR(j) =
1

2
(XU(j) ⊗Xj ⊗ ZP (j) + iXU(j) ⊗ Yj ⊗ ZR(j)) (2.9)

That Z is applied to P (j) in the first terms is because the even parity projection operator has
a ZF (j), so when we also apply ZR(j) we get ZP (j) as F and R by definition compose P .

If we compare the even and odd cases, the only difference is to which qubits Z is applied in the
last Z gates. If we define ρ(j) = P (j) for j even and R(j) for j odd, we get the final result for all j:

a†j = XU(j) ⊗Π+
j ⊗ ZR(j) =

1

2
(XU(j) ⊗Xj ⊗ ZP (j) − iXU(j) ⊗ Yj ⊗ Zρ(j)) (2.10)

aj = XU(j) ⊗Π−j ⊗ ZR(j) =
1

2
(XU(j) ⊗Xj ⊗ ZP (j) + iXU(j) ⊗ Yj ⊗ Zρ(j)) (2.11)

2.3 Representing Hamiltonian terms
With the operators defined, it is straightforward but tedious to figure out how the relevant Hamil-
tonian terms are translated to Pauli gates in the BK representation. All the details are presented in
Seeley, so I will just give one example. Let’s consider the number operator a†iai. From the definitions
above:

a†iai =
1

2
(XU(j) ⊗Xj ⊗ ZP (j) − iXU(j) ⊗ Yj ⊗ Zρ(j))× (2.12)

1

2
(XU(j) ⊗Xj ⊗ ZP (j) + iXU(j) ⊗ Yj ⊗ Zρ(j))

=
1

4
(I + i(XiYi)⊗ ZP (i)\ρ(i) − i(YiXi)⊗ ZP (i)\ρ(i) + I) (2.13)

=
1

2
(I − Zi ⊗ ZP (i)\ρ(i)) (2.14)

It gets progressively more messy from here. Thankfully, we can have a computer do this trans-
lation for us.

2.4 BK Hamiltonian for minimal basis H2

Applying this transform to minimal basis H2 in which there are four spin-orbitals, we get the
following result which we will use later (from O’Malley et al PRX):

4

Caltech/ Physics on near-term QC/Minnich Lecture 8, Spring 2019

H = f0I + f1Z0 + f2Z1 + f3Z2 + f1Z0Z1 + fyZ0Z2 + f5Z1Z3 (2.15)
+ f6X0Z1X2 + f6Y0Z1Y2 + f7Z0Z1Z2 + f4Z0Z2Z3 + f3Z1Z2Z3

+ f6X0Z1X2Z3 + f6Y0Z1Y2Z3 + f7Z0Z1Z2Z3

You start to see how many terms there are, even for the simplest possible problem! This
Hamiltonian can be simplified somewhat: note that H acts off diagonally only on qubits 0 and 2
(the X gates). The simulation starts in a product state (corresponding to the HF molecular orbital
basis) and therefore qubits 1 and 3 are never flipped. These qubits can thus be removed from
the problem, leading to the Hamiltonian often cited in the literature (qubit numbers have been
relabeled):

H = g0I + g1Z0 + g2Z1 + g3Z0Z1 + g4X0X1 + g5Y0Y1 (2.16)

The constants g are computed classically and only depend on the bond length selected. You can
see that this Hamiltonian is much simpler than the original one! We are now ready to apply some
algorithm to find the ground state and other properties of this Hamiltonian.

5

	Parity basis
	Bravyi-Kitaev (BK) transform
	Introduction
	Representing operators
	Representing Hamiltonian terms
	BK Hamiltonian for minimal basis H_2

