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Lecture 7: JW Transform

Reading: Check out here. If you look at here be careful that the definitions of occupied and
unoccupied orbitals in this paper are switched compared to most other sources and hence everything
else is flipped.

1 Overview of solving quantum problems on a digital QC

Regardless of the particular problem or algorithm used on a QC, there are a few steps that we
always need to take to make a problem suitable for a QC. They can be summarized as follows:

1. Define what a qubit means in terms of the physical problem. For instance, for a fermionic
problem the 0 and 1 of the qubit could correspond to empty and occupied. Or, each qubit
could mean something more complicated. We need a transformation from the relevant Hilbert
space of the problem to qubit space.

2. With each qubit having a defined meaning, we need to transform operators in the original
Hamiltonian to a tensor product of Pauli matrices.

3. For some algorithms, though not all, we need to implement U = e ##* in an efficient way.

Essentially always, we still need to perform unitaries of the form U = e~

product of Pauli operators arising from the terms in the Hamiltonian.

0t where & is a tensor

We quickly run into problems if we try to carry out these tasks. First, a qubit is a two level
system, and when many qubits are placed together in a QC they effectively form a collection of
spin-1/2 particles that can be operated on and entangled by the gate set of single and two qubit
gates. These gates commute and hence act as bosonic operators. If the system of interest consists
of hard core bosons (meaning at most one boson can be present per site) it is easy to perform the
mapping: qubits simply represent the sites and creation QT and annihilation Q~ operators can be
defined in the usual way, e.g. Q1/~ = X FiY, where X and Y are the usual Pauli matrices (note
the switch of F in the definition of creation and annihilation operators!)

Now let’s consider performing this mapping for fermions. One way to map the Fock space to
qubits is straightforward since at most fermion can occupy a given state due to the antisymme-
try requirement of the wavefunction. Therefore, the occupation number basis maps the occupation
number of a given orbital to a given qubit. (There are other ways that we will talk about later). The
real problem is that the gate operators on the QC are bosonic and hence commute, but the fermionic
operators in an electronic Hamiltonian anti-commute. Somehow we need to convert fermionic op-
erators into Pauli matrices while still retaining the anti-commutation relations. There are various
ways to do that, as well as various ways to encode the occupation of electronic states in the qubits.

2 Jordan-Wigner Transform

2.1 Specification of the transform

The Jordan-Wigner transform employs the occupation number basis and specifies how to map
fermionic operators a;, etc to Pauli matrices X, etc. The occupation number basis is defined as
the basis for which the qubit encodes whether a spinorbital is occupied or empty (since we have
fermions, those are the only choices). Transforming from occupation number of fermions to qubits
is easy since qubits are two-level systems. We make the identification:

| fa—1--fifo) = |agn—1) ® ... ® |q1) |q0) (2.1)


http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf
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where ¢; € {0,1} is the state of the qubit. We therefore have translated the occupation number of
orbital j to the state of the two-level qubit.

That was the easy part. Now, we have to figure out how to map Fermionic creation and
annihilation operators to qubit operators, and the problem is that qubit operators commute but
fermionic operators anti-commute. To solve this problem, let’s first recall the 1-qubit creation
and annihilation operators Q% and Q. They are defined so that Q*[0) = [1), QT |1) = |0),
Q~|1) = |0), @ ]0) = |0). These operators act almost exactly in the way we would like for
fermionic operators, and so an obvious strategy to create p-qubit quantum gates is to make a
p-tensor product of gates tensored with identity on the other n — p qubits.

The problem is that such an operator would not obey the fermionic anti-commutation relations.
Let’s investigate the problem further by writing down the matrix representation of Q% and Q™.
Define QT = [1) (0| = (X —iY)/2 =0~ and Q= = [0) (1| = (X +iY)/2 = 0" where X and YV
are the usual Pauli matrices. Note the difference in the plus and minus in the operator definition
compared to the actual sign in the operator.

Then

Qr - (? 8) (2.2)
Q = (8 3) (23)

You can check that these operators obey the fermionic anti-commutation relations at the same
site, e.g. {QT,Q} = I where I is the identity matrix. However, if these operators are part of a
tensor product over all sites and the operators are applied to different sites, they will commute and
hence their commutator, NOT the anti-commutator, equals 0: | ;r, Qj] = 0 for ¢ # j and the same
for other combinations of + and —. So Q1 and Q™ are in-between fermionic and bosonic operators.

To define operators that obey all the fermionic requirements, let us first restate the requirements.
We have two choices for how to define a canonical order, but once we choose it we should stick to
it. Unfortunately, different references make different choices. For the two qubit example below,
canonical order is defined as a 1...a$ |vac). With that definition, we have

n—

Qf [ng =0,np=1) = QTQ;F lvac) = —Q;Qf lvac) = —|ng =1,n; = 1) (2.4)

where we have realized that the first ket was not in canonical order. Therefore, we need to add sign
counters that keep track of whether states to the right of the state to which the operator is applied
are occupied. We actually know of a matrix that can do that sign-counting: the Z Pauli matrix!
When applied to a site, this diagonal matrix gives +1 if the state is empty and —1 is filled. So we
can solve our problem by letting Qf — Qf ® I, and Q; =1 ® Q; Then,

QIQ; = QL) (Z12Q3)=Qf 21 ©QF =-21Qf ® Q3 = -Q5Qf (2.5)

So tensoring the operator with Z on sites on index less than that of the site of the operator has
produced a new operator that satisfies all the fermionic anti-commutation relations.

Now in the Seeley paper, canonical order is actually defined opposite to what I have written
above. Specifically, a state is given as:

| fno1---fo) = ag...aL_l lvac) (2.6)
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Since we follow that paper later for the BK transform, we will use it here for the definition of
JW-transformed creation and annihilation operators. The transform is:

o = T eQtes¥=Qf 0 7, (2.7)
a; = I®n_j_l X Q_ X Z®j = QJ_ X 7]'_1 (28)

where the Z string is defined as 71 =7, R Z;i_1...2y.

With these operators, we have now successfully transformed our fermionic operators and state to
Pauli matrices and qubits! Note that the Jordan-Wigner transformation can also be used to exactly
solve certain spin Hamiltonians, which was the reason it was originally developed. The one problem
with the JW transform is that it turns local operators into non-local operators - a local creation
operator on orbital j has now turned into a tensor product of operators that in general has length
O(n). Such a non-local Pauli string is undesirable in practice because it leads to large gate depth
in the actual quantum algorithm. There are some ways around that, as we will see, but for now we
examine exactly how the electronic structure Hamiltonian transforms under the JW transform.

2.2 Application to electronic structure Hamiltonian
2.2.1 One-body terms

The electronic structure Hamiltonian can be divided into 1-body and 2-body terms. Let’s first
consider the 1-body terms of the form:

H, = Z hiia;rai + Z hij(a;faj + a;[ai) (29)
%

i<j

Let’s start with the diagonal terms. We have:

i—1 i—1
ala; = ([ 20 (] 2@ =@ Q7 (2.10)

k=1 k=1
HX Y)(X HiY) = (XY —iYX 4 ) (211)
= lervix )= Ler-22)= Lu-2) (2.12)

To implement the exponentiation of this operator, we have:

1 0

where in the first line we used the fact that I and Z commute. So this diagonal term is just a
phase gate.
Now let’s take care of the non-diagonal terms. As an example, let n =5, ¢ =2, j = 4 so that

al = Z0QTeI®I®l (2.15)
ay = ZQRQZIRIQ I (2.16)
alay = IQQTZ0Z0Q oI (2.17)
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A typical string would consist of this term plus its Hermitian conjugate.
With this result as an example, in general, we have the following (leaving off the strings of
identity operators):

j—1 j—1
Iaj—i-a}ai = Q;FZZ( H Zk)Qj_-i-ZZQZ_( H Zk)Q;— (2.18)

k=i+1 k=i+1

a

Now in this string we have terms of the form Qf Z; @ ... ® Qj_ +7ZQ; ®..® Q;r. Use the
definitions of Q1 = (X —4Y)/2, Q= = (X +14Y)/2 in the tensor product, add the terms, and use
the anti-commutator and commutator properties of Pauli matrices to find the final result:

1
ala;j +ala; = —5 (Xi(L )X+ Yi(L)Y)) (2.19)
where (...) is shorthand for the Z string. A little shortcut is to realize that Q*Z = —Q™ and
Z@Q~ = —Q~ to remove the Z gates prior to evaluating the sum.
So we see that the one-body term can be generically written in the form:

Hy =S hal — Zi) — % S b (X () X+ Vi)Y = S B, (2.20)
7 l

1<j

This term consists of a sum of many Pauli strings that are in general nonlocal. We have
to exponentiate this sum to implement it as a unitary on our qubits. To deal with the sum of
non-commuting operators, we have to Trotterize. Another problem is that we have to somehow
implement nonlocal strings of Pauli operators with only two-qubit operations that we can actually
implement in a real QC.

There are a few ways to see how to treat these strings. The first, ad-hoc way is as follows.
Consider first the unitary:

o—i0/2
010/2

U = o—10/2(282) 0/ (2.21)

o—i0/2

The circuit that implements this unitary can be figured out to be: CNOT, I ® R,, CNOT.
Here R,(0) = exp(—i6/2Z) is the rotation operator about the Z axis. For instance, checking the
operations on the second qubit, we see they are X R, X which flips the diagonal entries of R,, giving
us the correct two-qubit gate. It’s best if you explicitly check this statement yourself.

This result can be generalized to longer Z strings by adding more CNOTs, e.g. for 3 qubits the
circuit would be CNOT, CNOT, R,, CNOT, CNOT.

This is all well and good, but in our Pauli string we have X and Y gates at the beginning and
end of the string. How to deal with those? It turns out to be easy: simply change basis first, then
apply the circuit we just discussed, then change the basis back. Explicitly, for the X(...)X term,
we apply the Hadamard operator on the first and last qubits, then the circuit above, then Hf = H
again. For the Y (...)Y term, we apply a rotation gate about the x axis, Ry (—m/2) = exp(i(n/4)X)
to rotate the y axis to the z axis. We will denote this gate as RY and is given by:
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W_lci> (2.22)

To return to the Z basis we apply RYT.

The more mathematical way to get this result is to figure out sequences of unitaries that can be
applied to yield the desired string. For this procedure we will need the important property of the
Pauli matrices that:

(%) — [ cosf + (i - &) sin b (2.23)

Now, let’s say we want the string X; X2 X3 where subscript indicates qubit number. Let’s start
with a Z; gate and apply the following unitaries:

) . 1
e~ i(m/HON Zlez(ﬂ’/4)Y1 — 5(1 —iY))Z1(I 4 iY1) (2.24)
1
= E(Zl -+ i[Zl, Yl] + }/IZIY1> =X; (225)

where we used YZY = —Z and [Z,Y] = —2iX.
Now apply the following unitaries to X7:
, » 1
T XTI = (1 —iZ122) X1 (I + 121 2) (2.26)
1
= §i[X1, 212y = Y12 (2.27)
Similarly, we have:
€+iw/4zlz3Y1Z2€_i7T/4ZIZB = XleZ'g, (228)
6_“—/4Y3X122Z36i7r/4yl - X122X3 (229)
Note the sign change in the first equation, designed to avoid a sign flip. Therefore, we have

X122 X3 = UJUIUSUT 2,0, U,U3U,4 (2.30)
Using the fact that UTe 20U = exp(iUtZU#), we see that

e—iX1Z2‘..Zj_1X]'9 — HU];;re_iZQHUkl (231)
k K’

implements the term.
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2.2.2 Two-body terms

The two-body terms get quite complicated. We will show a few cases but refer you to the reference
for the full details. The general form of the two-body term is:

vakla a;aa (2.32)
ijkl

Note the order of the indices is different between the coefficient and the operator (physicist
notation). Also i # j and k # [ for fermions.
There are many possible cases that can occur. If ¢t =1, j = kor ¢ = k, j = [, the term is

diagonal. Let’s consider the case for aja}aiaj, 1< j:

i—1 j—1 j—1 i—1
clajoe; = TJz@n T 2@) [T2@) [T 2@ (2.33)
s=1
= HZ4Q+ZZQ H Z;QrQ; (2.34)
t=i+1
= QFQIQQy = 11~ Z)( - 7) (2.35)

Considering that there are four permutations of 1 and j that yield the same state, the final result
is multiplied by 4
Now let’s consider the general case. The general form of the term is

Hijp = Z Z Vijra( a akal + a}aiaﬂz) (2.36)
<k j<l

where we used that Vi, = Vij; again due to fact that switching the order of the operators
has no effect on the final state. There end up being 12 cases for the ordering of the indices (e.g.
i < j <l <k, etc) with the second term in the above equation giving 24 possibilities for the
ordering. When we switch the ordering of indices, we have to be careful to account for the sign
change that accompanies the operators.

It gets to be a pretty horrible mess. The upshot is we get Pauli strings of the form XZ..ZXY Z...ZY .
These strings look similar to the ones we had for the one-body term but are more precisely two
of the strings put together. Using similar logic to the one-body case, we find that we can use two
sets of unitary transformations consisting of CNOTs and single-qubit rotations to implement the
exponentiation of the string:

e*'iXZ...ZXXZ...ZXH — H ‘/;T H UliefiZaZbG H ‘/s H Uk: (237)
s k s k

where a and b correspond to some of the 4, j, k,l depending on the particular permutation.
2.2.3 Complexity

You can see that this calculation ends up with a lot of terms pretty fast. For both the one and
two body terms, for each term in the Hamiltonian we need O(n) operations mainly due to the Z
strings. The main trouble is that there are O(n*) terms in Hs leading to an overall scaling of O(n°)!
The gate depth required to handle all of these terms is quite substantial. As a result, using QC for
actual electronic structure Hamiltonians of physical interest is quite some time away.
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