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MPS II: Diagonalization, fermonic signs; Translationally invariant MPS;
AKLT model

[credit for course materials: Prof. Jan von Delft]

Iterative diagonalization and Fermionic signs

. L N
1. lterative diagonalization £ "; f N
( N Vo a — %_ a Aq
Consid in- — hain with Hamiltoni = C < ¢
onsider spin 1 chain wi amiltonian “ z S‘. h( £ T = S.t SQ“(
0= b L=
For later convenience, we write the spin-spin interaction in covariant notation. Define
] A ‘f £ <
A +2 ( ) -~ | (‘\ _ )
o / - = )
;=S / 2 I \Sr %
A 1 A A a_a
. 2 2 X P 2
and the operator triplet Sl ¢ SL"‘ — SC 0 € St 2” 4+ R/
nt a 14 " 242 4
- + ¥ ¢ + S,
s L 5{—: -( §4 o) ¢ SN f

Then the dot product term is:
. A
S S = ¢
V- 7. =
= § 5% S, BQ ! S
s P 1+ . AF- ta
s=0s s (S S

The Hamiltonian can be expressed in the basis: ? ‘.6\7‘/ ? {0'\”7 [(rl?[ 7}

4 o ) H (cr l
( v
” 0 j;us a linear map acting on a direct product space: V @ V @ \/‘\ - @ \/

ay

¢
d‘,('l A A )3 )”07\/(
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where \/ L is the 2D representation space of site x.

n

N
H is a sum of single-site and two-site terms.
(

n © o
O%cf;—site terms: Sa( = '00'7 6“ ) 7, (l i
~

8 G
Matrix representation in \/L : (Sa) 6’2 = <6’l Su(’c\l7 = (Q)r g“‘)&

(5.F, (<)
= 5(l) s HE) el

Nearest -neighbor interactions, acting on dlrect product space ’ 027 @ |¢1 - 7

0y

l
7,

~‘ 14 o
T 7 Iy ) ( ) 2
Sae( lc Ql76 S 7, <0\QI(C ‘ S_-f-
Matrix representation in ‘I(*l®\'l: C )
o t o e
L4 4 Q
(A’&‘ﬁ\”\) S &0y S e

We define the 3-leg tensors g/ S‘]’ with index placements matching those of

tensors for wave functions: incoming up, outgoing down, with Qa (by convention) as

middle index. A”‘“"' & A Jaes Cm gkl & (/ta'f%/l_
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Diagonalize site 1

o4 a
Ho = Sa” h,

1

site index () <\

= uq qu;"

chain of length 1

is diagonal, with matrix elements

([)‘)“; = (ﬂ(‘)ﬁ,‘(”')ﬁ‘ (ul)l:(k
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X U,
i - i" i
0’ - “ | 0-!(
B L Q
ol u‘(f“

Eigenvectors of the matrix H are given by column vectors of the matrix U\| :
\

N\
Eigenvectors of operator Hl are given by : (d? - '0‘,7 ((A 1) ol

G‘T‘x

0

K

K

|
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Add site 2
Diagonalize Hj\ in enlarged Hilbert space, ?‘); = 5/"" { [0‘2) ’0() §
chain of length 2

L a - A n-r
H}-: I)N@ S;"‘( + Sz‘t‘l@*rt + TS ‘\

Matrix representation mv @Vj- corresponding to ‘local’ basis, 'f ) ’0“7
o,
( ~

PN e he o
K d)‘tr - K 1 i'tL -(—-T,i 1HA+TY,HSI = b
ks — r 4

(
(T(( ‘rL

We seek matrix representation in V(@“}. corresponding to enlarged, ‘site-1-diagonal’

T ¢

basis, defined as L

79 =lag) = Iy 7}

7

So, attach u( (q( to in/out legs of site 1, and I I to in/out Iegs of S|te 2:

< U T
[ ;‘ T
.‘_‘ -— foc S'
~ - H‘l
;\ :‘( .-—é—~ “‘
(r ¢

First term is diagonal. But others are not.
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Now diagonalize HL in this enlarged basis: H& = Ml 0* “I

D u 1~ "} (A& is diagonal, W|th matrix elements

0, {;' E:

Eigenvectors of matrix ‘4 are given by column vectors of the matrix ( u

Al
=
1)
<

"\

Eigenstates of the operator u i

£ = W) = = oW ¢ =), (),

U,\ M( u&ﬁ
- - ¥
LR M 4

(¢

Add site 3

Transform each term involving new site into the ‘enlarged, site 1,2 diagonal basis’,

defined as: £ ‘ T _ @
1572 [pe) =lop16D 4
ft

For example, spin-spin interaction, 22
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Local basis: u P\ " T
T 0 03
enlarged,
t ¢f
gk S-3 site-1,2 diagonal basis 5

at uf -
Then diagonalize in this basis: H} - uz 03 (Aj‘

Etc. At each iteration, Hilbert space grows by a factor of 2. Eventually, truncations

needed.

2. Spinless fermions

Consider tight-binding chain of spinless fermions:

N 3 it a
= = {(&fg( + Zh(erzbl t <y C‘)
' L2

Goal: find matrix representation for this Hamiltonian, acting in direct product space

while respecting fermionic minus signs:
Ao fletl -0
{C(( Ce(S'O {C‘/Clls .

_ A A A
= Crgt v Gy
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First consider a single site (dropping the site index l ):

Hilbert space: 5{M([O7l ‘(7) local index: n=a € ng' }
Operator action: Z+ ( D) — l '7 é\f‘l> =0
2[67 =0 é‘l(): /0>

a
(fmé\c

4

a4 _[O o)
have matrix representations in \/ : C+ OIO_ = ( d’" ¢ ’0.7 : (I i

a O (
Ccrl :écr('C("‘?’ (,00) ’,i
T
Shorthand: we write

.'.
Al —> C

lower case: operator in Fock space; upper case: matrix in 2-dim space V

(
The operators 2+ - '0”(> Cf f;_(d‘,

Check anti-commutation relations:

("d=c'c +c =1
C+CT:O - CC



MCE 201, APh 250/Minnich Module 3 Page 8 of 30
a ‘V"\f\

For the number operator ®# = C C , matrix representation in V reads:

nz Cc = (39) = 4(z-2)

1

A
—( 1o
where 2 = (0 -\ / is a representation of i - ‘-——);.‘ = ("[’

. . P | A A~ +
Useful relations: - T a a
C2 =-2¢ + ¢4 u

A
—-2cC

n ey a
Commuting C o€ & /‘.'f—lf produces a sign (check on your own).

1 ~t A
Intuitive reason: < € ¢ both change A eigenvalue by one,

hence change sign of Q')n
A ot Qe
Examples: £+ __() = C =~ Cﬂ C
(
7 Cr) = -t

A ~2ef > Mlz oN l07
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Now consider a chain of spinless fermions:

Complication: fermionic operators on different sites anti commute:

G = =g, (# 1%e)

Hilbert space:

5,“'\([(?74, = ’/l‘(/l,\l - - 4’14’7)

Define canonical ordering for fully filled state:
(=, . A=) = G - cfd [ueern)
Now consider:
gf M‘:dl 41\:17 = 2:7 qcf\d«? = -Z’IEH\M?
= ’l’\(l\(ﬂ‘(:l7

To keep track of such signs, matrix representations in V@ V/\ need extra ‘sign

—

G\ e,

d=rned X

counters’ tracking fermion numbers:

- + A4
&= G @G') = (62

T

Here ® denotes a direct product operation; the order (space 1, space 2, ...)

matches that of the indices on the corresponding tensors: AO“(O\;\ -~
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Algebraically:
ete ..
Similarly:
4% 4"’
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E -Lé‘ Méuiny Z
/ ,1«,5"‘ C+
C?LI i 2 fu PE)
L, CI cJ”
(

More generally, each C* ar (( must produce sign change when moved past

. ( . , . . . N
with C’G ((’0‘ . 80, define the following matrix representations in \p - V'@ _ @Vﬂ/

1(7 1

A+
+ 52
= G4
¢, ~

-—

.‘—
C‘ = I( @ - @ I’-"l@Cl @Zl_[‘@- ZN

I @~—~—@ I(.(@C(®Z_¢ﬂ - ZN

, 2] =T 2, 2t

®1270
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(Jordan-Wigner transformation). Exercise in HW to check.

In bilinear combinations, all of Z’s cancel. Exercise in HW to check.

Result: in spinless case, hopping terms are not changed by JW transform.

——

For spinful fermions, result will be different.

3. Spinful fermions

Consider a chain of spinful fermions.

Steindex () = | N spinindex  C é{'f,is - {'E(—i

+ 4 A 3
Anti-commutation relations { 6[5 [ Cl((' = SN‘ gsgl S SCGSI )
=0

“_caf at
‘{CIS rces(g -

Define canonical order for fully filled state: +
Cj;L Cup - Cu.\, Ctr |vac)

To get a matrix rep, first consider a single site (drop index Q ):

Hilbert space: S/&A {’07( |&7( [ 17/ 'T‘DS local index: 6~ = { O} Af ( T( Tis
ot
constructed via ’O 7 ‘ g/qc) | &7 | IG )

Nz (mE Qe
c&[ﬂ

147

I

Ve
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qQ
n
To incorporate minus signs, introduce _"Z - ( l) > ‘j\ ([ ;l\ >
(S - A J

[& éﬂﬁiﬂ

We seek a matrix representation of CS ((S (Zs in direct product space D _ @ v
= VT J

(Matrices acting in this pace will carry tildes)

2, = ;@ Ly = <(“)@(( \)‘ ("-( )TSC«ZT

)

+ ( ot
T - 9 0 < -
e o2y - (ool (1)
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A A
The factors ZS account for signs. For example C r Ci - =

s Iy Cy

AV

Algebraic check:

N

)

Remark: for spinful fermions (in contrast to spinless fermions) we have

A u'f~ Tw G M
(s C 2¢tC

.
+~ ~ ,t Z‘(//()/C\ AL‘\ cy

e C«-F

Cilp

- -GG
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w~

Now consider a chain of spinful fermions (analogous to spinless case with Vl )

A A C
Cl‘ (C‘t( ( £7£,

a Qa
f must produce a sign change when moved past

Each C’L . C
t.\
so define the following matrix representations in @ N V @ G V[V
I‘@ ~'@I€g(@ C(@ Z£+l@~@2[v
- ¢, 2

a _ « 25
Cr = C 2y

In bilinear combinations, most (but not all!) of the Z cancel

Example: hopping term
a
Csp-q L 2; ¢ i .. 1¢
. At 2 2
~F I h I CS
Cy e
\ ¢ l§ Caac
) 0-¢ | ey M Cangef (g?du'iih)

A

2
~+
C

2 VY

Bond -~ indicates sum

Convention: annihilation - outgoing arrow, creation, incoming arrow
— —

mnemonic: charge flows from annihilation to creation site
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Similarly:
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Translationally invariant MPS - A Cﬂ - A n(r\aM L

1. Transfer matrix ( tebsaike 715“"( fer ;,J;j()

Consider length-N chain with periodic boundary conditions

9 =157 A s Aoy - Paya

= (&) TfD‘g; " Ag:a] gﬂ; l ?

[Assume that all bonds have same dimension: 0‘( = 0/} = . '-‘0]

Normalization: K\\
3 =

L%‘%) - K;, AT v

4

regroup as:
‘Hﬂ( & 0, t o Vo
- (AC Jo &l W) - Agacut o«
( ¢
(
( J &
—_— A B .
— ' C(') m( ﬁ =T T(”) v A
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We define the ‘transfer matrix’ (collective indices chosen to reflect arrows on effective
( o T2

o A

B

vertex). Q _ & F( _ ‘f[S
Tm b Tﬁ?iﬂ. ¢ Am“

A
L A -')\A__’)\ Q b
N p, < 90
\ —& Y
Then o ‘
¢ n ’\f ) }\

(HY) = Tcgé Tore -  Tana VES Ofﬂ

=~ Tr (TCO" TCND)

Assume all A tensors are identical, then the same is true for all I matrices.

Hence

N  N-%O N
L 4(<) = T((TN> = 4)‘: () — &)

where "‘j are the eigenvalues of the transfer matrix, andvis the largest one of these.

T
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2. Eigenvalues of transfer matrix

Assume now that A tensor is left-normalized (analogous discussion holds for RN)

Then we@the MPS is normalized to unity: l = < ('(( Lé)

N
Therefore, the largest eigenvalue of the transfer matrix is Q\ () = l = +(

Hence all eigenvalues of transfer matrix must satisfy l r}\; [

\/J - 2| ( o
The ei tor, , having ei lueTs_ = | i - I
€ elgenvector, aving eigenvalue :' IS (\/ q A

44!

q d( o T
VU\T PERANP L4 ¢ ConpianT o

- o [
A‘gd"o\A ¢ s

Eo—\
- L [S — b A'f
€itn Lﬂ\Ut —
Jef of J '
[¢ft A
-a [A more rigorous proof exists but due to time constraints we will not do it in class.]
Overall result: all eigenvalues of transfer matrix built from left-normalized A-tensors

have modulus less than or equation to unity.
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dy¢
} ‘ 5&)
d\e

3. Correlation functions

Consider local operator:

A 0':“
O(l) —;"O'C 76Cl)0’1 C@Q'

Define corresponding transfer matrix: ; \ A o

T - AL Ome A 1
o - 0‘1‘ CQJ (re A

A‘T

4 a

Correlator: Cﬂ(( = (&l; ‘ O(C() O[Z') l%)

( (
— [ 0-p'- N b 1|
AT TO[I()T —l;[e)T )

NV(L-1) - 40—
Tr(T Tau‘? Tl d 'o(‘e))

Let 3 . be eigenvectors, eigenvalues of transfer matrix J J
Vit oo ; > VT =hY

or explicitly with matrix indices: (V3 5“ qu = .‘\J (VJ )b

Transform to eigenbasis of transfer matrix: (t {
N-(L-)-1 ( ) (Y‘\ )R' o
(oo 5 ) s ) Ty
3J

LN
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For N"’w , only contribution of largest eigenvalue, 'b\ -\ , survives:

¢ -
Cl(l /\230 'ﬁ,\/ Ji (Toa‘)\‘j ( ) (Toujs

W\-—\
FC//’VGICJ l-l »P) (
N

Assume O[l) ’O[I )-/O and take their separation to be large. 9 l _3 09

Cy tfﬁ ut [KW' lﬁr < )ﬂ HJ

(
If <Ta> ( :"O e_)‘long—range order’

9"{'/"%/ \/ Co[ﬂ[ﬂe\’f\ /C/"“t/\/\) xS [’id’w

I

i <T;5 ( =0 ‘exponential decay’, Q«M—Q 1/3

with correlation length S _ ([A (‘h/ﬁ» ~(
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AKLT Model

[Affleck 1988, Schollwock2011, Sec 4.1.5, Tu2008]

1. General remarks:

* AKLT model was proposed by Affleck, Kennedy, Lieb, and Tasaki in 1988.

* Previously, Haldane had predicted that S=1 Heisenberg chain has finite excitation
gap above a unique ground state, i.e. only ‘massive’ excitations [Haldane 1983a, b]

» AKLT then constructed the first solvable, isotropic, S=1 spin chain model that
exhibits a ‘Haldane gap’.

* Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, D=2.

» Correlation functions decay exponentially - the correlation length can be computed

analytically.
f—5 v
Haldane phase for S=1 spin chains | z 4 /N
0 W+ S=

e

by

Consider a bilinear-quadratic (BB) Heisenb% model for 1D chain of spin S=1:
N - ~ X
Hee = 2 SoSq T zé(gt'su,\
L=l

Phase diagram:

pure
integrable point Heisenberg  AKLT integrable point
' 2 7 y!
o 4 -1 o Y. 1 Y “--c
L 3
dimerized phase , gapless phase

gapped Haldane phase: f_’, e (—c,l)

o
S}ﬂf 5 @ (includes Heisenberg point and AKLT point)
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Main idea of AKLT model: ”(,%u- - q 44 ( B = '/3)

i

=
-
[

is built from projectors mapping spin on neighboring sites to total spin gf
123!

Ground state satisfies HA‘LLT '37 - D . To achieve this, ground state is

constructed in such a manner that spins on neighboring sites can only be coupled to

¥
llt‘/( - O or [/

To this end, the spin-1 on each site is constructed from two auxiliary spin-1/2 degrees
of freedom. One spin-1/2 each from neighboring sites is coupled to spin 0; this projects

out the the S=2 sector in the direct-product space of neighboring sites, ensuring that

.'(th'l’ annihilates ground state.

Traditional depiction: MPS depiction: spin-1/2’s live on QO’AS

bonds
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2. Construction of AKLT Hamiltonian

Direct product of space spin 1 with spin 1 contains direct sum of spin 0,1,2:

Y oH - Y4eoH oH

-3
- aloe oS
Projector of ’3‘/1@7'/( onto 7‘/5 ( S" D/(IJ\ ) Ct‘g “I;pns
L
(<) ()
P 0] G5y = o T [an ) - sG64)
= A s's T o A
. “h(“ Sfu\
STy ﬂofz:g’z.ﬁm qe\ds 2¢
Using (g—'_"i) - C _— 5. S‘) - cF ot s/

=5
I m) le(m)

we find for spin-2 projector:

p®) - c[1F5 P~ 0w |55 - )
= [‘1(&( sk) e (3,5) +8’]

()

Normalization is fixed by demanding that lo) must yield | when acting on

spin-2 subspace:

l P'(H - C [1(1-}\) -0 ) [A(h\) - l[lﬂj

(;‘fEL)J\Z A(JH) (
- -4 2 c= —
G e
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Final projector on spin-2 subspace:
(+) (= 7 g L ¢ c 1
P‘,l - Z(§/'{*> 4 I §¢‘<L 5 g

Q) ~
- (L [31 ( SJ—)

AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins:

() ~ _
= 5l (S,,s“l)
'

H ALT

For a finite chain of N sites, use periodic boundary conditions, i.e. ¢ - §

Q*N 0

Each term is a projector, hence has only non-negative eigenvalues. Hence same is true

for

Haeer -

A state satisfying HA(LL'(' |q7 30 must be a ground state!
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3. AKLT ground state

On every site, represent spin 1 as symmetric combination of two auxiliary spin-1/2s:

W) = (NI
[s=Uie) =162 = (o) = & (1) « (DID

o L=1) = (uy0dy
On-site projector that maps ’b(?(\ @HVL q ’H’
= 14y Qlal + 1oy s (e + Ut 4 =74y

of 4 4B
Use such a projector on every site l : 4‘f

! o

Coy = 1), C g ,u(gﬁ'

+oL - 00
RS T I I TP N 6‘) / :;( )
C:&oo)fc'd}—(o ; C ©

Now construct nearest-neighbor valence bonds from auxiliary spin-1/2 states:

bt _
V), = (40 [, v 2100, BADN

ba v A
L [o - (4
V (’1(‘\63
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AKLT ground state = (direct product of spin-1 projectors) acting on (direct product of

valence bonds)

oly¢l

>y
V
|
:/
o
&
O
<
~
=
A

Why is this a ground state?
Coupling two auxiliary spin-1/2 to total spin 0 (valence bond) eliminates the spin-2

sector in direct product space of two spin-1. Hence spin-2 projector in HA&L\' yields
zero when acting on it.

0o o3
%\

L
x84 01 5l

-> AKLT ground state is an MPS!

Tr [ 7 Z Ty “Cﬂ Ag- % 0/‘2 g f’{g,“ g ‘i‘uz
9= T lo0) &, UM SR
(¢ 6p-1 6 Grec
with [ G’(ﬁlﬁ 0'( Az “l
‘L - “/‘C v
(74}
& &K, C V
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Explicitly: _ .
0, =+l ° ( ) \ m( )
-\ ( \ 'lo)
e (o) (‘Io
( cU_ (o0 s\ _ (o6
0,z -~ A -(O ))%Clo "<)';_(~1o

Not normalized: g 0’6“ +

2

4]

o
k)

a

| 1
)
~—~
o ©
d—
"
N
~ Q0
S o
v

*
¢

r

L
-\
~

Define right-normalized tensors, satisfying

lsra-[;- "/I ( go—;: ]J‘? é\o‘

(Y
x
\f
wlys
R
() (=)
§ —
o
o
(r
)=
)
O —
~ O
\_—‘
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Note: we could have also grouped B and C in opposite order, defining

vV ¢

b T Ao de i _ wrt
A p( ) V ¢ "(t Fo ) e

This approach leads to left-normalized tensors, with A i ‘ gz l

Exercise: verify that spin-2 projector yields zero when acting on sites |, I+1.

matar K - - ¢
Hint: use spin-1representation for (g c S o

Boundary conditions:

For periodic boundary conditions, Hamiltonian includes projector connecting sites 1

and N. Then the ground state is unique.

For open boundary conditions, there are ‘left-over spin-1/2’ degrees of freedom at both

ends of chain. Ground state is four-fold degenerate.

tice .- © 14
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4. Transfer operator ( fo thallene I )

o, O |+-C)
o] o )
£ 12 ( N
ﬁ NEH R . o2
To compute spin-spin correlator, C:f( = Cﬂl SQ') ch‘) \ 3>

b ol af
-3 Neel TSL - @«" (g )0’ 6 gL:(;‘O'f>

= +|(\«(—O'(\ + (‘l)()

0 |
-k 0|
= 06

Exercise: Compute eigenvalues and eigenvectors of T. Show that correlator decays

ol

exponentially and hence that model is gapped.
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5. String order parameter

AKLT ground state: , 57 < (@N7 T((JJI o 5@/) /| 0; G?—[,dl‘g

X c _ _) 2 oo -
T 6 (/}C (4 -2C

J3
with Pauli matrices ) .Cf /'L\ ( Cf- A O ( )5

Now, note that @ pall /50 y +
Thus, all ‘allowed configurations’ (having non-zero coefficients) in AKLT ground state

have the property that every i\ is followed by a string of 0 , then ; ( .

Allowed: [@”7 =~ l oo -| 0|0

Not allowed: l (?,v) -~ ' 000  ~—

T (TSciy =z

- ' e gclr’)

=24 |

Exercise: show that ground state expectation value of string order parameter is non-
S"Tl ( >

zero. ¢ t )

“ M ‘ “m ¢ 3 ' lg( 9
-iom N-®

0 N ofriay
String order parameter: l, (
(] Ce 1
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