MPS II: Diagonalization, fermonic signs; Translationally invariant MPS; AKLT model

[credit for course materials: Prof. Jan von Delft]

Iterative diagonalization and Fermionic signs

Iterative diagonalization

Consider spin-
$$\frac{1}{2}$$
 chain with Hamiltonian $\mu^{N} = \sum_{l=1}^{N} \frac{1}{3} \cdot h_{l} + \sum_{l=1}^{N} \frac{1}{3} \cdot \frac{1}{3$

For later convenience, we write the spin-spin interaction in covariant notation. Define

$$\hat{s}_{z} = \hat{s}^{+z}$$
 $\hat{s}_{\pm} = \frac{1}{n}(\hat{s}_{x} \pm i\hat{s}_{y})$
 $\hat{s}_{\pm}^{+z} = \frac{1}{n}(\hat{s}_{x} \pm i\hat{s}_{y})$

and the operator triplet

$$\frac{\hat{S}_{\ell}}{\hat{S}_{\ell-1}} = \hat{S}_{\ell}^{\times} \hat{S}_{\ell-1}^{\times} + \hat{S}_{\ell}^{\times} \hat{S}_{\ell-1}^{\times} + \hat{S}_{\ell}^{\times} \hat{S}_{\ell-1}^{\times} + \hat{S}_{\ell}^{\times} \hat{S}_{\ell-1}^{\times} \\
= \hat{S}_{\ell}^{+} \hat{S}_{\ell-1}^{+} + \hat{S}_{\ell}^{+} \hat{S}_{\ell-1}^{-} + \hat{S}_{\ell}^{+} \hat{S}_{\ell-1}^{-} + \hat{S}_{\ell}^{+} \hat{S}_{\ell-1}^{-} \\
= \hat{S}_{\ell}^{+} \hat{S}_{\ell-1}^{+} + \hat{S}_{\ell}^{+} \hat{S}_{\ell-1}^{-} + \hat{S}_{\ell-1}^{-} \hat{$$

Then the dot product term is:

$$\hat{S}_{a} = \{\hat{S}_{t}, \hat{S}_{-}, \hat{S}_{z}\}$$

$$\hat{S}^{\dagger a} = \{\hat{S}^{\dagger +}, \hat{S}^{\dagger -}, \hat{S}^{\dagger z}\}$$

The Hamiltonian can be expressed in the basis:

is a linear map acting on a direct product space:

0, 4 4 4 4 00

is the 2D representation space of site

is a sum of single-site and two-site terms.

one

$$\hat{S}_{al} = |\sigma_i|^{\gamma} (S_a)^{\sigma_i} (\sigma_i)$$

Matrix representation in V_{k} : $(S_{a})^{\sigma_{k}} = (\sigma_{i}^{\prime}(S_{a})(\sigma_{k})) = ((S_{a})^{\uparrow}(S_{a})^{\downarrow})$

 $S_{+} = \frac{1}{5} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $S_{-} = \frac{1}{5} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $S_{2} = \frac{1}{5} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Nearest-neighbor interactions, acting on direct product space,

$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}$$

Matrix representation in V.:

We define the 3-leg tensors 5,5 with index placements matching those of tensors for wave functions: incoming up, outgoing down, with (by convention) as Arow to a goes from annihilation to creation. middle index.

Diagonalize site 1

$$H_{i} = \begin{cases} f_{i} & f_{i} \\ f_{i} \\ f_{i} \end{cases} = \begin{cases} f_{i} & f_{i} \\ f_{i} \\ f_{i} \\ f_{i} \end{cases} = \begin{cases} f_{i} & f_{i} \\ f_{i} \\ f_{i} \\ f_{i} \\ f_{i} \end{cases}$$
chain of length 1 site index $f_{i} = f_{i}$

$$\oint_{C} = \mathcal{U}_{i}^{\dagger}(\mathcal{A}_{i}, \mathcal{A}_{i}) \text{ is diagonal, with matrix elements}$$

$$(\mathcal{A}_{i})^{\star}_{\lambda} = (\mathcal{U}_{i}^{\dagger})^{\star}_{\sigma_{i}}(\mathcal{A}_{i})^{\star}_{\sigma_{i}}(\mathcal{A}_{i})^{\star}_{\sigma_{i}}$$

Eigenvectors of the matrix

are given by column vectors of the matrix

Eigenvectors of operator \mathcal{H}_{l} are given by: $(\mathcal{A}) = [\sigma, 7(\mathcal{U}_{l})]_{\mathcal{A}}^{\sigma_{l}}$

Add site 2

Diagonalize in enlarged Hilbert space, $\mathcal{H} = \mathcal{H} \{ (\sigma_i) (\sigma_i) \}$ chain of length 2

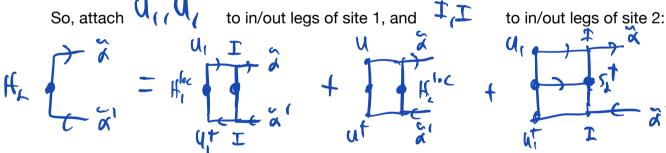
$$H_{\lambda} = I_{\lambda} \otimes \hat{S}_{1} \cdot \hat{h}_{1} + \hat{S}_{1} \cdot \hat{h}_{\lambda} \otimes I_{1} + J \hat{S}_{a_{1}} \hat{S}_{\lambda}^{tq}$$

Matrix representation in Volume corresponding to 'local' basis,

$$H_{0,0}^{(0)} = H_{0}^{(0)} + I_{0}^{(0)} + I_{0}^{(0)}$$

We seek matrix representation in $V_{(6)}V_{(6)}$ corresponding to enlarged, 'site-1-diagonal'

basis, defined as



Now diagonalize
$$H_{k}$$
 in this enlarged basis: $H_{k} = U_{k} \int_{\mathcal{A}} u_{k}^{\dagger}$

 $\int_{\lambda} = Q_{\lambda}^{T} H_{\lambda} Q_{\lambda}$ is diagonal, with matrix elements

Eigenvectors of matrix H_{λ} are given by column vectors of the matrix $(U_{\lambda})^{\alpha} = (U_{\lambda})^{\alpha}$

$$\left(U_{\lambda}\right)_{\beta}^{\alpha} = \left(U_{\lambda}\right)_{\beta}^{\alpha}$$

Eigenstates of the operator $\mu_{\mathbf{i}}$

Eigenstates of the operator
$$H_1$$

$$|\beta\rangle = |a\rangle\langle U_1\rangle^{\alpha}_{\beta} = |\sigma_1\rangle\langle u_1\rangle\langle U_2\rangle^{\alpha}_{\beta} = |\sigma_2\rangle\langle \sigma_1\rangle\langle U_1\rangle_{\lambda}\langle U_2\rangle_{\beta}$$

$$|\beta\rangle = |a\rangle\langle U_1\rangle^{\alpha}_{\beta} = |\sigma_1\rangle\langle u_1\rangle\langle u_2\rangle_{\beta}$$

$$|\beta\rangle = |a\rangle\langle u_1\rangle\langle u_2\rangle_{\beta}$$

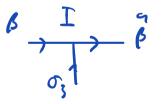
$$|\beta\rangle = |a\rangle\langle u_1\rangle\langle u_2\rangle_{\beta}$$

$$|\beta\rangle = |a\rangle\langle u_2\rangle\langle u_2\rangle_{\beta}$$

Add site 3

Transform each term involving new site into the 'enlarged, site 1,2 diagonal basis',

defined as:

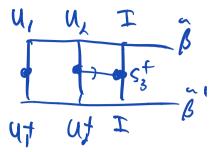


For example, spin-spin interaction,

Local basis:

enlarged,

site-1,2 diagonal basis



Then diagonalize in this basis:

$$H_{3} = U_{3} Q_{3} U_{3}^{+}$$

Etc. At each iteration, Hilbert space grows by a factor of 2. Eventually, truncations needed.

2. Spinless fermions

Consider tight-binding chain of spinless fermions:

$$\hat{H} = \underbrace{\sum_{i=1}^{N} \mathcal{E}_{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}}_{l=1} + \underbrace{\sum_{i=1}^{N} \mathcal{E}_{i} \hat{c}_{i}^{\dagger} \hat{c$$

Goal: find matrix representation for this Hamiltonian, acting in direct product space while respecting fermionic minus signs:

$$\{\hat{c}_{i}, \hat{c}_{i'}\} = 0$$

$$\{\hat{c}_{i}, \hat{c}_{i'}\} = 0$$

First consider a single site (dropping the site index

Hilbert space: $\int \rho dx \left(\left(0 \right) \left(\left(1 \right) \right) \right) = \int \left(\left(0 \right) \left(\left(1 \right) \right) \right) dx$

Operator action: $\hat{c}^{\dagger}(0) = |1\rangle$ $\hat{c}^{\dagger}(1) = 0$

 $\hat{c}(0) = 0 \qquad \hat{c}(1) = 10$

):

The operators $\hat{c}^{\dagger} = |\sigma'\rangle c^{\dagger}\sigma\langle\sigma|$; Save $f_{\alpha} = \hat{c}$

have matrix representations in V: $C^{+ol} = \langle c^{+} | \hat{c}^{+} | c^{+} \rangle = \langle c^{+} | c^{+} | c^{+} | c^{+} \rangle = \langle c^{+} | c^{+} | c^{+} | c^{+} \rangle = \langle c^{+} | c^{+} | c^{+} | c^{+} \rangle = \langle c^{+} | c^{+} | c^{+} | c^{+} | c^{+} \rangle = \langle c^{+} | c^{+} | c^{+} | c^{+} | c^{+} | c^{+} | c^{+} \rangle = \langle c^{+} | c^{+} |$

 $C_{\sigma}^{ol} = C_{\sigma}^{ol} | \hat{c}|_{\sigma}^{ol} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Shorthand: we write

 $e^{2^{+}}$ $\stackrel{\longleftarrow}{\longleftarrow}$ C'

lower case: operator in Fock space; upper case: matrix in 2-dim space V

Check anti-commutation relations:

 $\{c^{\dagger},c\}=c^{\dagger}c+cc^{\dagger}=I$ $c^{\dagger},c^{\dagger}=0=Cc$

For the number operator n = 0, matrix representation in V reads:

$$\Lambda \equiv C^{\dagger}C = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{2}(1-2)$$

where $Z = \begin{pmatrix} 10 \\ 0-1 \end{pmatrix}$ is a representation of $2 = (-1)^3$

Useful relations:

Commuting Correct produces a sign (check on your own).

Intuitive reason: 5 t 5 both change 7 eigenvalue by one, hence change sign of (I)

Examples:

$$c^{n+}(-1)^{n} = c^{n+} = -(-1)^{n}c^{n+}$$

$$c^{n+}(-1)^{n} = -(-1)^{n}c^{n+}$$

Now consider a chain of spinless fermions:

Complication: fermionic operators on different sites anti commute:

$$C_{\ell}C_{\ell'}^{\dagger} = -C_{\ell'}^{\dagger}C_{\ell}$$
 (for $\ell' \neq \ell$)

Hilbert space:

Define canonical ordering for fully filled state:

$$|\Lambda_1=|,...,\Lambda_N=1\rangle = C_N^{\dagger}...C_1^{\dagger}C_1^{\dagger}|Vacuun\rangle$$

Now consider:

$$c_{1}^{+} | n_{1} = 0, n_{2} = 1 = c_{1}^{+} c_{1}^{+} | v_{ac} \rangle = -c_{2}^{+} c_{1}^{+} | v_{ac} \rangle$$

$$= -(n_{1} = 1, n_{2} = 1)$$

To keep track of such signs, matrix representations in V_(O)V_(C) need extra 'sign counters' tracking fermion numbers:

$$\hat{c}_{i}^{\dagger} = C_{i}^{\dagger} \otimes (-1)^{n_{i}} = C_{i}^{\dagger} \otimes 2_{i}$$

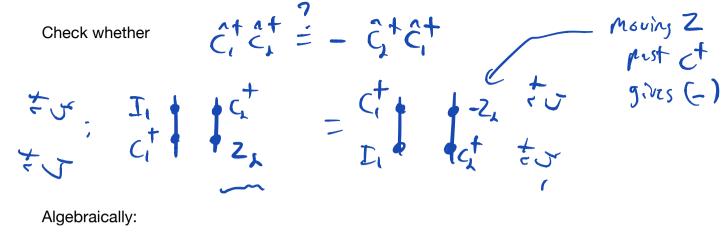
$$\hat{c}_{i}^{\dagger} = I_{i} \otimes c_{i}^{\dagger}$$

$$\hat{c}_{i}^{\dagger} = I_{i} \otimes c_{i}^{\dagger}$$

$$\hat{c}_{i}^{\dagger} = I_{i} \otimes c_{i}^{\dagger}$$

Here \bigcirc denotes a direct product operation; the order (space 1, space 2, ...) matches that of the indices on the corresponding tensors:

Page 10 of 30



etc.

Similarly:

More generally, each (must produce sign change when moved past with $\mathcal{C}_{\mathcal{C}}$. so, define the following matrix representations in $\mathcal{C}_{\mathcal{C}}$ $\mathcal{C}_{\mathcal{C}}$.

$$\begin{aligned} \hat{c}_{i}^{\dagger} &= \pm_{i} \Theta - \Theta \pm_{i-1} \Theta C_{i}^{\dagger} \Theta Z_{i+1} \Theta - 2_{N} \\ &= c_{i} Z_{i}^{2} \\ \hat{c}_{i} &= \pm_{i} \Theta - \Theta \pm_{i-1} \Theta C_{i} \Theta Z_{i+1} \Theta - 2_{N} \\ &= c_{i} Z_{i}^{2}, \quad Z_{i}^{2} \equiv \prod_{i=1}^{N} Z_{i}^{2} + 2_{i}^{2} M_{N} \end{aligned}$$

(Jordan-Wigner transformation). Exercise in HW to check.

In bilinear combinations, all of Z's cancel. Exercise in HW to check.

Result: in spinless case, hopping terms are not changed by JW transform.

For spinful fermions, result will be different.

3. Spinful fermions

Consider a chain of spinful fermions.

Site index

Anti-commutation relations

Spin index
$$S \in \{T, J\} = \{C_{es}, C_{es}\}$$

$$= \{C_{es}, C_{es}\} = \{C_{$$

Define canonical order for fully filled state:

To get a matrix rep, first consider a single site (drop index

Hilbert space:

constructed via

$$|117 = \frac{2t}{t} \frac{2t}{t} |07$$

$$= \frac{2t}{t} |177$$

$$= -\frac{2t}{t} |17$$

To incorporate minus signs, introduce

$$\hat{z}_s = (-1)^{\hat{n}_s} = \int_{a}^{b} \left([-\hat{n}_s] \right) ds$$

$$\left[s \in [\hat{l}, J] \right]$$

We seek a matrix representation of C_{5} , C_{5} , C_{5} in direct product space $V = V_{1} \otimes V_{1}$

(Matrices acting in this pace will carry tildes)

The factors $\frac{7}{3}$ account for signs. For example

Algebraic check:

Remark: for spinful fermions (in contrast to spinless fermions) we have

$$\tilde{C}_{s}^{\dagger} \tilde{z} \neq \tilde{C}_{s}^{\dagger}$$
 $\tilde{z} \tilde{c}_{s} \neq \hat{c}_{s}$

Now consider a chain of spinful fermions (analogous to spinless case with

Each must produce a sign change when moved past

ê, ê, l>l.

so define the following matrix representations in

$$\hat{C}_{i}^{\dagger} \equiv \hat{I}_{i} @ ... @ \hat{I}_{\ell-1} @ \hat{C}_{\ell}^{\dagger} @ \hat{Z}_{\ell+1} & - @ \hat{Z}_{N}$$

$$= \hat{C}_{i}^{\dagger} \hat{Z}_{i}^{2}$$

$$= \hat{C}_{i}^{\dagger} \hat{Z}_{i}^{2}$$

ĉ, = č, ž?

In bilinear combinations, most (but not all!) of the Z

Example: hopping term

1 Z's cancel dies not cancel (> identit

Bond \rightarrow indicates sum \geq

Convention: annihilation - outgoing arrow, creation, incoming arrow

mnemonic: charge flows from annihilation to creation site

Similarly:

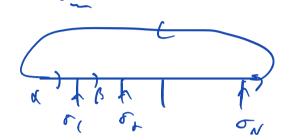
Translationally invariant MPS

-) A Ca) = A final le (infinite system periodic &c)

Transfer matrix

Consider length-N chain with periodic boundary conditions

$$= |\vec{\sigma}_N| \operatorname{Tr} \left[A_{Cij}^{\sigma_i} - A_{CNj}^{\sigma_N} \right]$$



[Assume that all bonds have same dimension: $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ [Assume that all bonds have same dimension: $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Normalization:

regroup as:

$$= \begin{pmatrix} A + A' & A^{\alpha \sigma_i} \\ A_{Ci)} \sigma_i \alpha' & A_{Ci)} B \end{pmatrix} - \cdots \begin{pmatrix} A^{\dagger \alpha'} \\ A_{CN)} \sigma_i \alpha' & A_{CN)} \alpha \end{pmatrix}$$

$$= T_{Ci)} \alpha' B \qquad T_{CN)} \alpha' \alpha$$

We define the 'transfer matrix' (collective indices chosen to reflect arrows on effective

vertex). $T_{C1} = T_{C1} = T_{C2} = T$

Assume all A tensors are identical, then the same is true for all matrices.

Hence

$$\langle 4|4\rangle = 4(4_N) = \sum_{i} (+_i)_N \xrightarrow{N\to\infty} (+_i)_N$$

where ts are the eigenvalues of the transfer matrix, and vis the largest one of these.

2. Eigenvalues of transfer matrix

Assume now that A

tensor is left-normalized (analogous discussion holds for RN)

Then we how the MPS is normalized to unity: = (4)

Therefore, the largest eigenvalue of the transfer matrix is

$$(t_1)^{N} = 1 = 1$$

Hence all eigenvalues of transfer matrix must satisfy

The eigenvector, $\sqrt{j} = 1$, having eigenvalue $\sqrt{j} = 1$ is

$$V_{\alpha} T_{\beta}^{\alpha} = A^{\beta}_{\sigma \alpha} I_{\alpha}^{\alpha} A^{\alpha \sigma}_{\beta}$$

$$= A^{\beta}_{\sigma \alpha} A^{\alpha \sigma}_{\beta}$$

$$= I^{\beta'}_{\beta} = V_{\delta}$$

$$\uparrow \quad \uparrow \quad \text{eigenvalue} = 1$$

14/ 51

$$A^{\dagger} = C$$

(A more rigorous proof exists but due to time constraints we will not do it in class.) Overall result: all eigenvalues of transfer matrix built from left-normalized A-tensors have modulus less than or equation to unity.

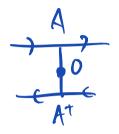
3. Correlation functions

Consider local operator:

$$\delta_{(e)} = |\sigma_e| / \delta_{(e)} \sigma_e |\sigma_e|$$

Define corresponding transfer matrix:

$$T_{o}^{(a)} = A_{\sigma_{a}}^{f} O_{\alpha}^{\sigma_{a}} A^{\sigma_{a}}$$



Correlator:

$$= Tr(T') - (T_{O(\ell')} - T_{O(\ell)} - T_{O(\ell')} - T_{O($$

or explicitly with matrix indices:

$$(v^{j})_{\alpha} T^{\alpha}_{\beta} = t_{j}(v^{j})_{\beta}$$

Transform to eigenbasis of transfer matrix:

sform to eigenbasis of transfer matrix:
$$C_{l'l} = \sum_{j,j'} (+_{j'})^{N-(l-l')-1} (T_{o(l')})^{j} (+_{j'})^{N-(l-l')-1}$$

(Det of face a resolution of identity New Toron For N=00, only contribution of largest eigenvalue, tile = t, survives:

$$C_{1',1} \xrightarrow{N \to \infty} + \sum_{j=1}^{N} \left(T_{O(2^{j})} \right)_{j} \left(\frac{+5}{+1} \right)^{1-1} \left(T_{O(2^{j})} \right)_{j}$$
For the second of the sec

O(l) = O(l) = O(l), and take their separation to be large. $I - I' \rightarrow \infty$

(To) (+0 flong-range order'

Collelation remain, as l-l-soo

If
$$(T_0)' = 0$$
 'exponential decay', $\alpha = \frac{-10 - 11/3}{3}$ with correlation length $3 = (1/4/4)$

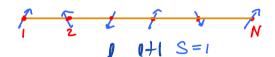
AKLT Model

[Affleck 1988, Schollwock2011, Sec 4.1.5, Tu2008]

1. General remarks:

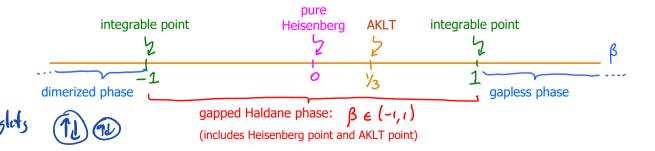
- AKLT model was proposed by Affleck, Kennedy, Lieb, and Tasaki in 1988.
- Previously, Haldane had predicted that S=1 Heisenberg chain has finite excitation
 gap above a unique ground state, i.e. only 'massive' excitations [Haldane 1983a, b]
- AKLT then constructed the first solvable, isotropic, S=1 spin chain model that exhibits a 'Haldane gap'.
- Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, D=2.
- Correlation functions decay exponentially the correlation length can be computed analytically.

Haldane phase for S=1 spin chains



Consider a bilinear-quadratic (BB) Heisenber model for 1D chain of spin S=1:

Phase diagram:



Main idea of AKLT model:

is built from projectors mapping spin on neighboring sites to total spin

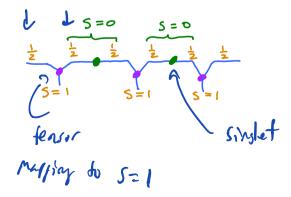
Ground state satisfies H_{Akur} G . To achieve this, ground state is constructed in such a manner that spins on neighboring sites can only be coupled to

To this end, the spin-1 on each site is constructed from two auxiliary spin-1/2 degrees of freedom. One spin-1/2 each from neighboring sites is coupled to spin 0; this projects out the the S=2 sector in the direct-product space of neighboring sites, ensuring that ALLT annihilates ground state.

Traditional depiction:

MPS depiction: spin-1/2's live on bonds

bonds S = 0 $\frac{1}{200} \frac{1}{2}$ S = 0 S



2. Construction of AKLT Hamiltonian

Direct product of space spin 1 with spin 1 contains direct sum of spin 0,1,2:

$$P_{(1)}^{(1)} = C\left(\frac{1}{3}, \frac{1}{5}, \frac{1}{5}, +4 - 0(0+1)\right)\left[\frac{1}{3}, \frac{1}{5}, \frac{1}{5}, +4 - 1(1+1)\right]$$

$$= C\left(\frac{1}{3}, \frac{1}{5}, \frac{1}{5}, +4 + 1\right)\left(\frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, +4 + 1\right)$$
Normalization is fixed by demanding that
$$P_{(1)}^{(1)} = P_{(2)}^{(1)} = P_{(3)}^{(1)} = P_$$

spin-2 subspace:
$$\begin{vmatrix}
1 &= & \rho(\lambda) \\
1 &= & \rho(\lambda)
\end{vmatrix} = \left(\left(\frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} - \frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} - \frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} \right) = \left(\left(\frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} - \frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} - \frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} \right) = \left(\frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} - \frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} - \frac{\lambda(\lambda+1)}{\lambda(\lambda+1)} \right)$$

Final projector on spin-2 subspace:

$$P_{(1)}^{(1)} = \frac{1}{6} \left(\bar{s}_{1}, \bar{s}_{1} \right)^{2} + \frac{1}{6} \bar{s}_{1}, \bar{s}_{1} + \frac{1}{3}$$

$$= P_{(1)}^{(1)} \left(\bar{s}_{1}, \bar{s}_{1} \right)^{2} + \frac{1}{6} \bar{s}_{1}, \bar{s}_{1} + \frac{1}{3}$$

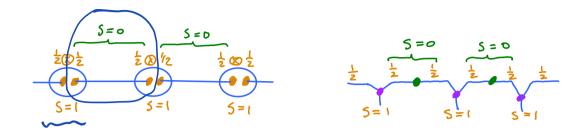
AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins:

For a finite chain of N sites, use periodic boundary conditions, i.e. $\frac{1}{500} = \frac{1}{500}$

Each term is a projector, hence has only non-negative eigenvalues. Hence same is true for

A state satisfying HAKLT 14) = must be a ground state!

3. AKLT ground state



On every site, represent spin 1 as symmetric combination of two auxiliary spin-1/2s:

$$|S=1,\sigma\rangle = |\sigma\rangle = \begin{cases} |+1\rangle = |1\rangle|1\rangle \\ |\sigma\rangle = |\tau\rangle|1\rangle|1\rangle + |\tau\rangle|1\rangle|1\rangle|1\rangle$$

On-site projector that maps $\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\mathcal{U}} + \mathcal{H}_{\mathcal{U}}$

Use such a projector on every site

$$\hat{C}_{(a)} = |\sigma|_{a} C_{ab} |\mathcal{L}_{a}| |\mathcal{B}|$$

$$\hat{C}_{(a)} = |\sigma|_{a} C_{ab} |\mathcal{L}_{a}| |\mathcal{B}|$$

$$\hat{C}_{(a)} = |\sigma|_{a} C_{ab} |\mathcal{L}_{a}| |\mathcal{B}|$$

$$\hat{C}_{(a)} = |\sigma|_{a} (|\sigma|_{a}) |\mathcal{C}_{(a)} =$$

Now construct nearest-neighbor valence bonds from auxiliary spin-1/2 states:

$$|V\rangle_{e} = |\rho_{e}\rangle_{e} |d_{e+1}\rangle_{e+1} V^{\beta_{e}d_{e+1}} = \frac{1}{2}(|r\rangle_{e}|1\rangle_{e+1} - |1\rangle_{e}|r\rangle_{e+1}$$

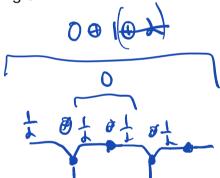
$$V = \frac{1}{2}(0) \int_{-1}^{1} |r\rangle_{e}|r\rangle_{e+1} V^{\beta_{e}d_{e+1}} = \frac{1}{2}(|r\rangle_{e}|1\rangle_{e+1} - |1\rangle_{e}|r\rangle_{e+1}$$

AKLT ground state = (direct product of spin-1 projectors) acting on (direct product of valence bonds)

$$|9\rangle \equiv \prod_{\varnothing e} \hat{C}_{(e)} \prod_{\varnothing e} |v\rangle_{e}$$

Why is this a ground state?

Coupling two auxiliary spin-1/2 to total spin 0 (valence bond) eliminates the spin-2 sector in direct product space of two spin-1. Hence spin-2 projector in Haker yields zero when acting on it.



-> AKLT ground state is an MPS!

$$\alpha_{\ell-1}$$
 β α_{ℓ} β $\alpha_{\ell+2}$ β $\alpha_{\ell+2}$ β $\alpha_{\ell+2}$ β $\alpha_{\ell+1}$ β $\alpha_{\ell+2}$ β $\alpha_{\ell+1}$ β $\alpha_{\ell+2}$ β $\alpha_{\ell+1}$ $\alpha_{\ell+1}$ β $\alpha_{\ell+1}$ $\alpha_{\ell+1}$ β $\alpha_{\ell+1}$ α_{ℓ

Explicitly:

$$\sigma_{\ell} = +1: \qquad \tilde{S}^{+1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \frac{1}{J_{k}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \frac{1}{J_{k}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\
\sigma_{\ell} = 0: \qquad \tilde{S}^{0} = \frac{1}{J_{k}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \frac{1}{J_{k}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \frac{1}{J_{k}} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\
\sigma_{\ell} = -1: \qquad \tilde{S}^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{J_{k}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \frac{1}{J_{k}} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Not normalized:

$$\tilde{\mathcal{B}}^{\sigma}\tilde{\mathcal{B}}^{\dagger}_{\sigma} = \frac{1}{4}\binom{01}{01}\binom{06}{10} + \dots$$

$$= \frac{3}{4} \cdot \mathbf{I}$$

Define right-normalized tensors, satisfying

$$\mathcal{B}^{\sigma} \mathcal{B}^{\dagger} = \mathcal{I} \qquad \mathcal{B}^{\sigma} = \sqrt{\frac{4}{3}} \hat{\mathcal{B}}^{\sigma}$$

$$\mathcal{B}^{\dagger} = \sqrt{\frac{1}{3}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \mathcal{B}^{\sigma} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathcal{B}^{-1} = \sqrt{\frac{1}{3}} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

Note: we could have also grouped B and C in opposite order, defining

This approach leads to left-normalized tensors, with

$$A^{\pm 1} = B^{\pm 1}$$

$$A^{\circ} = A^{\circ}$$

Exercise: verify that spin-2 projector yields zero when acting on sites I, I+1.

Hint: use spin-hrepresentation for (5, 5, 1)

Boundary conditions:

For periodic boundary conditions, Hamiltonian includes projector connecting sites 1 and N. Then the ground state is unique.

For <u>open</u> boundary conditions, there are 'left-over spin-1/2' degrees of freedom at both ends of chain. Ground state is four-fold degenerate.

4. Transfer operator (for Italiane 94)
$$T^{a}_{b} = T^{ab}_{a'}_{b'} = B^{+p'}_{\sigma a'} B^{A\sigma}_{B} = (B^{a'\sigma}_{\beta'}) B^{\sigma}_{B}$$

$$T = \overline{B}^{\sigma} \otimes \overline{B}^{\sigma}$$

$$= \overline{\left[\frac{1}{3}\left(\frac{0}{\delta}, \frac{1}{\delta}, \frac{1}{\delta}, \frac{1}{\delta}\right)\right]} + \overline{\left[\frac{1}{3}\left(\frac{1}{\delta}, \frac{1}{\delta}, \frac{1}{\delta}\right)\right]} + \overline{\left[\frac{1}{3}\left(\frac{1}{\delta}, \frac{1}{\delta}, \frac{1}{\delta}\right)\right]}$$

$$+ \overline{\left[\frac{1}{3}\left(\frac{1}{\delta}, \frac{1}{\delta}, \frac{1}{\delta}\right)\right]} + \overline{\left[\frac{1}{3}\left(\frac{1}{\delta}, \frac{1}{\delta}, \frac{1}{\delta}\right)\right]} + \overline{\left[\frac{1}{3}\left(\frac{1}{\delta}, \frac{1}{\delta}, \frac{1}{\delta}\right)\right]}$$

To compute spin-spin correlator,

(5/9)

$$= +1 \left(\right) + 0 \cdot \left(\right) + (-1) \cdot \left(\right)$$

$$= \frac{1}{3} \left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right)$$

Exercise: Compute eigenvalues and eigenvectors of T. Show that correlator decays exponentially and hence that model is gapped.

5. String order parameter

AKLT ground state: $|g\rangle = (\partial_N) Tr(B^{\sigma_1} - B^{\sigma_N}) / \sigma_e \in \{-l_{i}, l_{i}\}$

$$\mathcal{B}^{+} = \frac{1}{\sqrt{3}} \mathcal{T}^{+}, \quad \mathcal{B}^{\circ} = -\frac{1}{\sqrt{3}} \mathcal{T}^{2}, \quad \mathcal{B}^{\circ} = -\frac{1}{\sqrt{3}} \mathcal{T}^{-}$$
with Pauli matrices
$$\mathcal{T}^{+}, \mathcal{T}^{2}, \mathcal{T}^{-} \qquad \left(\mathcal{T}^{+} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right)$$

Now, note that

Allowed:
$$(G_N) = (G_N) = (G_$$

Not allowed:
$$(\mathcal{F}_r) = \begin{bmatrix} 000 \\ = \end{bmatrix}$$

Exercise: show that ground state expectation value of string order parameter is non-

zero.
$$\lim_{l-l\to\infty} \lim_{N\to\infty} |l| \int_{l}^{\infty} \frac{1}{2} \int_{l}^{\infty} \frac{1}{2}$$

Hint: find Teimse Tse Teimse Tse T