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Lecture 3: Overview of computational complexity
Reading: Hamiltonian complexity, T. Osborne, Reports on Progress in Physics (2012).

1 Computational complexity

With this proof of principle discussion in hand, now is a good time to discuss the computational
complexity of executing tasks on classical and quantum computers, which will then tell us which
problems we can expect to solve on quantum computers. From the above discussion, it is clear that
simulating the dynamics of a physical quantum system is efficient on a quantum computer in that
it requires a polynomial number of gates in the simulation duration. Let’s make this concept more
precise and expand the discussion to various other tasks like finding ground states.

We first define Hamiltonian complexity as the resources required to simulate a physical system.
This term and the associated study of the computational complexity of physical simulations origi-
nally arose when a connection was realized between the equilibrium states of many-body problems
and the satisfying assignments of variables for certain logic problems. For instance, the decision
problem associated with finding the ground state of a classical Ising spin glass is NP-complete,
meaning that any combinatorial optimization problem in NP can be mapped to this physical sys-
tem. |[I]

With this link in mind, let’s go over the classical complexity classes. A general schematic we will
refer to is given in Fig. 1 [2]. A concept we need first is that of a deterministic or non-deterministic
Turing machine. Since this class is not about computer science I will give a very rough overview
of this topic. A deterministic Turing machine is one that executes one command based on what
it reads in a memory tape. A non-deterministic Turing machine is an imaginary machine that can
execute multiple commands based on what it reads as specified by a transition function. Such a
machine generates a tree of commands that grows exponentially as each command is implemented.

There are a few important classical complexity classes. First, P is the complexity classes con-
taining all decision problems that can be decided in polynomial time on a deterministic Turing
machine. It contains problems such as linear programming, finding greatest-common divisors, and
so on. Problems in this class are regarded as those that can be efficiently solved. A second important
classical complexity class is BPP - the class of decision problems that can be solved in polynomial
time using a probabilistic Turing machine with error less than 1/3 (an arbitrary number that should
be less than 1/2). The idea is that repeating the algorithm with enough repetitions will yield the
correct solution with probability approaching unity. P is a subset of BPP, and together these classes
describe problems that have an efficient classical solution.

NP is the class of decision problems for which the solution can be verified in polynomial time.
However, finding the solution to a problem in the class is a problem regarded as generically “hard”
in that the best known algorithms require exponential time to solve. The Merlin-Arthur class (MA)
can be regarded as the equivalent of BPP for P: a probabilistic version of NP where the solution
can be checked using a probabilistic non-deterministic Turing machine with error less than 1/3.
Finally, the complexity class #P is a counting class for which the problem is to count the number
of solutions to a given problem in NP. As a solution must be found to count it, problems in #P
are at least as hard as those in NP and are usually harder. A number of important problems in
physics are in #P, in particular the problem of calculating expectation values for a tensor network
in greater than one dimension [3].

Here is an example of the mapping between an optimization problem and a local Hamiltonian
ground state search. A common optimization problem is known as 3SAT, where SAT stands for
satisfiability. The goal is to satisfy clauses (logical AND) that consist of a disjunction of literals
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(OR). For instance, a valid clause could be Cj(z) = Zj, V xj, V xj; and f = AJL,Cj(x) where V is
logical OR, A is logical AND, and T denotes NOT =x.

We can associate a classical Hamiltonian to this optimization problem as H(x) = — >, h;(z)
where each local term is the product of the z variables interpreted as Ising spins: hj(z) = Zj, 2, 2;;.
Minimizing this function is equivalent to having all the clauses satisfied as in the original optimiza-
tion problem. NOTE: I am not sure that this equality is actually correct (although that is what
is in the Osborne paper). I am sure that 3SAT can be mapped to the maximal independent set
problem which is equivalent to the set packing problem, which then has a Hamiltonian given in Ref.
1]

The Cook-Levin theorem tells us that 3SAT is NP-complete. Therefore, it is correspondingly
unlikely that we can find the minimum of our physical Ising spin problem also! Although this result
would suggest that all spin problems lack efficient solutions, that turns out not to be the case: some
spin models like the ferromagnetic Ising model can be solved.

Aside: limitations of classical probabilistic computers

The following question may arise in your mind: given that quantum mechanics is probabilistic
in the sense that we can only predict probabilities rather than absolute outcomes of any given
experiment, why can we not use a classical probabilistic computer to simulate quantum systems?
In this scenario, we would simulate a quantum process by using transition rules to describe the
probability of obtaining various outcomes. Stringing these transition events together with the
associated probabilities would be a way to simulate a classical probabilistic process. Why won’t it
work for quantum systems which are also probabilistic?

Feynman gives a nice explanation in his lecture as to why this particular scheme is not possible
[1]. Briefly, the measurement outcomes on a quantum system cannot be simulated by any classical
probabilistic computer due to entanglement. If you analyze what a classical analysis would predict
the (probabilistic) outcome of a two-photon correlation experiment to be, it does not agree with the
experimental value (classical theory predicts at most 2/3 of the time we agree on the polarization
of the photon but the experiment says 3/4). It does, however, agree nicely with quantum theory
that includes the full Hilbert space of the two photons (with two polarizations for a Hilbert space
of dimension 4) and considers entangled photons emitted by an atom. Therefore, it is the effects
of entanglement that prevent us from using a classical probabilistic computer in this manner to
simulate a quantum system.

However, it is in fact possible to solve some quantum problems using classical probabilistic
computers in a different way. This family of methods is generally known as quantum Monte Carlo
and works very well for interacting bosonic systems. However, for fermionic systems which require
an antisymmetric wavefunction, we quickly run into the problem that in the process of converting
the quantum problem to a classical one that can be stochastically solved, we encounter nonpositive
semidefinite weights - the sign problem. Solving the corresponding classical problem is NP-hard!

]

1.1 Quantum complexity classes

The above discussion shows a quantum computer would be very helpful to simulate some quantum
systems. We now discuss the quantum analogs of the classical complexity classes that will tell us
which calculations quantum computers can carry out efficiently. First, let’s more precisely define the
decision problem associated with quantum simulation. To specify the problem we need to provide
a Hamiltonian H, an initial state pg, observables A, a (possibly complex) time ¢, and two proposed
expectation values a1 < ao.

The quantum simulator should output YES if (A) < ay and NO if (A) > aw, where (A) = Tr(pA)
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If t is real, this simulation corresponds to the usual real time simulation. If ¢ is purely imaginary,
we have imaginary time evolution that eventually leads to the ground state. ¢ could be neither purely
real or imaginary - that case corresponds to a system at finite temperature evolving in real time.

First, BQP is the class of decision problems (e.g. the simulation problem above) that can be
solved in polynomial time on a quantum computer with error probability less than 1/3. As discussed
in the previous lecture, simulating quantum dynamics can be implemented in polynomial time on a
QC, and relevant questions can be formulated as decision problems. As such, simulating quantum
dynamics is in BQP.

The quantum analog of probabilistic NP, or MA, is QMA. It is the class of decision problem with
solution that can be checked on a QC with error probability less than 1/3. Unfortunately, many
relevant problems for physics are contained in this complexity class, meaning that QCs cannot in
general solve them efficiently. An important example is the problem of finding the ground state of
a local Hamiltonian, which is more precisely stated as determining whether the smallest eigenvalue
of a Hamiltonian is greater or larger than some value up to some tolerance. This problem is QMA-
complete for k > 2 where k is the locality of the terms composing the Hamiltonian [6]. Many
other fundamental problems are in this class, including finding the universal functional for density
functional theory [7], the N-representability condition for finding an electron density consistent with
a valid wavefunction [3], and many others [9].

The result indicates that, just as in classical computation, we will need to make approximations
or exploit some physical knowledge to solve problems even on a QC. What we have going for us
with a quantum computer is the ability to represent the entire Hilbert space with a polynomial
number of qubits as well as an ability to manipulate and interrogate this quantum information.
Compared to classical computation, the exponential memory requirement is lifted for a QC. However,
another problem is related to extracting useful information from a QC, as determining the full
wavefunction of the set of qubits scales exponentially with the number of qubits. Therefore, for
efficient determination of relevant properties we are restricted to choosing measurement of certain
observables that we hope provide the physical information we seek.

1.2 Limited summary of relevant complexity classes

Here is a summary of the complexity classes most relevant for this class and the relationships
between them.

e P - decision problems that can be solved in polynomial time on a classical computer deter-
ministically

e BPP - bounded error probabilistic polynomial time: decision problems that can be answered
with a probabilistic classical computer with error of at most 1/3 (e.g. if the answer is YES, it
returns YES with probability > 2/3)

e BQP - bounded error quantum polynomial time: the same idea as BPP, with corresponding
error constraints, but with a quantum computer.

e NP - nondeterministic polynomial time: a prover can convince a verifier of a provided solution
in polynomial time.
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e PSPACE - problems for which a classical algorithm can verify an answer with polynomial
space (memory)

e Merlin-Arthur (MA) - verifier = Author can use a proof provided by Merlin to probabilistically
verify a solution on a classical computer with the usual error restrictions.

e QMA - MA using a quantum algorithm (loosely, the quantum version of NP)
e #P - counts the number of solutions for an NP problem (not a decision class).

e EXPTIME, EXPSPACE, NPSPACE, NEXPSPACE - you get the idea.
Some relations:

e PCNPC PSPACEC EXPTIME C EXPSPACE
e NPSPACE = PSPACE by Savitch’s Theorem
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