Caltech/ Physics on near-term QC/Minnich Lecture 6, Spring 2019

Lecture 6: Second quantization
Reading: Ostlund and Szabo Chap 2, or other documents online like this one.

1 Review of second quantization

Before we discuss using quantum computers for quantum simulation, we need to review the formal-
ism of second quantization. This discussion is very abbreviated and is mainly to motivate the form
of the second-quantized Hamiltonian we will use throughout the course. A more detailed description
of second-quantization can be found in Chapter 2 of Ostlund and Szabo or other references online.

First, let’s review a generic electronic structure problem specified in second quantization. Con-
sider a fermionic, nonrelativistic Hamiltonian under the Born-Oppenheimer approximation which
in first-quantization is generically of the form:
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This Hamiltonian is to be understood as an operator that acts on an N-particle state vector
|1). For fermions, such a state needs to anti-symmetric with respect to the interchange of any two
particles. The usual way to ensure that the state is indeed anti-symmetric is to take N single-particle
orbitals and construct a determinant - a Slater determinant. A determinant naturally changes sign
if we switch two columns. If we have N single-particle orbitals ¢;, we have a Slater determinant
|p1...¢pN) where |,,,) is understood to indicate the Slater determinant, not a product! The full
expression for the Slater determinant in terms of single-particle orbitals was given in class.

Now, we generally have to compute the action of H on our Slater determinant state. The rules
about how to carry out this action are known as the Slater-Condon rules. An alternate approach
to enforce these rules is to encode them into operators that act on a Fock space - a symmetrized
or anti-symmetrized direct sum of single-particle Hilbert spaces tensored together N times (for NV
particles). These operators can add or subtract particles to the Fock space via operators at and a
(just like you learned for the harmonic oscillator problem). A state in this Fock space is given as:
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where f; € {0,1} indicates whether state j is empty or occupied. Note the canonical order of the
Fock space is orbital n — 1 is left-most and orbital 0 is right-most in the ket state. |vac) denotes
the state with no particles.

The creation and annihilation operators operate on the Fock space in the following way:
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In this way the required anti-symmetry of the fermionic wavefunction is enforced. Thinking
about these requirements in turn implies the creation and annihilation operators obey the following
commutation relations:
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{Cbi, aj} = a;a; +a;a; = 0 (18)
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where {} indicate anti-commutator.

To translate the Hamiltonian from first-quantization to second quantization, consider that we
have a first-quantized operator O and we want (10|O|1) where |¢) is understood to be a Slater deter-
minant. One can show that exactly the same overlap term will be produced in second-quantization
if we let:
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where h; are the one-body terms (kinetic energy, electron-nuclear attraction) and hgy are the
two-body terms (from electron-electron repulsion). We won’t worry much about the h one and
two-electron tensors for now - just assume that they are tensors of numbers that will be provided
when needed. If you are curious, they are the matrix elements of the various operators like kinetic
energy and two-electron repulsion in the basis of the spin-orbitals.

There is a lot of detail we have skimmed over but at least you have a general idea of where the
second quantized fermionic Hamiltonian comes from. An approach to find the ground state of this
Hamiltonian is to solve the problem in a mean-field approximation (e.g. Hartree-Fock theory), and
then apply a perturbation theory (such a coupled-cluster on a classical computer or unitary coupled-
cluster on a QC) to that state to add in the correlation that is not present in HF (correlation energy
being defined as Ec = Ey — €9, where g is the exact energy and Ej is the basis-set-converged HF
energy. Classically, there are many approaches to recover this correlation energy. In this course, we
will examine quantum algorithms to accomplish this task and others.



	Review of second quantization

