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Lecture 11: Variational imaginary time evolution
Reading: McArdle et al, 2018.

1 Introduction
We now move to other approaches to obtain ground states of Hamiltonians as well as thermal
averages. The first one we will consider is still a variational scheme, but one that avoids a classical
non-linear optimization as in the standard VQE approach. It does so by using a QC to evolve
a state in imaginary time in steps, where the QC is used to obtain matrix elements for a linear
system, the solution of which provides the variational parameters at the next imaginary time step.
By sequentially repeating this process for steps in imaginary time, we will eventually arrive at the
ground state (or at a thermal average if we terminate the time stepping at the right time).

Say we have a Hamiltonian H =
∑

i λihi with the coefficients λi real and each hi a string of
Pauli operators as usual. If the system register starts in an arbitrary state |ψ〉, the normalized
imaginary time evolution (ITE) produces the state:

|ψ(β)〉 = A(β)e−Hβ |ψ(0)〉 (1.1)

where the normalization constant A(β) = 〈ψ(0)|exp(−2Hβ)|ψ(0)〉−1/2.
If the initial state has overlap with the ground state, as β → ∞, |ψ(β)〉 → |g〉. To reach the

ground state, we need to be able to evolve a state in imaginary time. The IT Schrodinger equation
is given by:

∂ |ψ(β)〉
∂β

= −(H − Eβ) |ψ(β)〉 (1.2)

where Eβ = 〈ψ(β)|H|ψ(β)〉 is introduced for normalization. In the present variational scheme,
we use a variational ansatz for the wavefunction as |ψ(β)〉 = |φ(~θ(β)〉 where ~θ(β) is a vector of
parameters just as in VQE. We prepare the state |φ〉 using a sequence of unitaries:

|φ〉 = UN (θN )...U1(θ1) |0〉 = V (~θ) |0〉 (1.3)

We now want to simulate ITE of this trial state. We do so by formulating a variational principle:

δ||(∂/∂β +H − E) |ψ(β)〉 ||= 0 (1.4)

where δ indicates a variation of the functional. If this variational principle is satisfied, it implies
that the original IT Schrodinger equation is also satisfied.

Now we project this equation onto the ansatz wavefunction. The equations are messy and are
given in the referenced paper (and I will give them in class). The main point is that out of all of
this derivation comes a linear system that must be solved for derivatives of the parameters with
respect to imaginary time, θ̇:

Aij θ̇j = ci (1.5)
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where the matrix elements for the matrix and right-hand side look like:

Aij = Re

(
∂ 〈φ|
∂θi

∂ |φ〉
∂θj

)
(1.6)

ci = −Re
(
∂ 〈φ|
∂θi

H |φ〉
)

(1.7)

In the SI of the paper, it is shown that Eβ is monotonically non-increasing, indicating that ITE
always tends to the best ground state energy within the constraints of the ansatz.

2 Getting the matrix elements
Now the question is, how to get the matrix entries, which are generally involve gradient terms like
∂ |φ〉 /∂θi. Considering that by definition |φ〉 = UN (θN )...U1(θ1) |0〉, the derivative term for θi is:

∂Ui
∂θi

=
∑
k

fkiUiσki (2.1)

where the assumption is that Ui is a rotation or controlled-rotation gate. Here σk is some Pauli
operator string and fk are scalar parameters. For a 1-qubit rotation gate, the sum would consist of
just one term. As an example, consider a Z rotation gate Ui = exp(−iσzθi/2).

∂Ui
∂θi

= − i
2
σzUi (2.2)

Therefore, the overall gradient term is:

∂ |φ〉
∂θi

=
∑
k

fk,iṼk,i |0〉 (2.3)

Ṽk,i = UN (θN )...Ui+1Uiσk,i...U1 (2.4)

Therefore, the matrix elements are of the form:

Aij = Re

∑
k,l

f∗k,ifl,j 〈0|Ṽ
†
k,iṼl,j |0〉

 (2.5)

ci = Re

∑
k,α

f∗k,iλα 〈0|Ṽ
†
k,ihαV |0〉

 (2.6)

These terms are generally proportional to Re(exp(iθ) 〈0|U |0〉). How do we get such a term
evaluated on a quantum computer?

The circuit to do it was presented in a few papers in the early 2000s [1–3]. We will go through
it in a few steps. First, let’s see how to evaluate Re(eiθ). Say we somehow obtained a state (|0〉+
exp(iθ) |1〉)/

√
2. We apply H to it so that (1 + exp(iθ))/2 is the term for |0〉 in the computational

basis. The probability to measure 0 is therefore:
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p(0) =
1

4
(1 + e−iθ)(1 + eiθ) =

1

2
+

1

2

(
e−iθ + e−θ

2

)
=

1

2
+

1

2
Re(eiθ) (2.7)

Therefore, Re(eiθ) = 2p(0)− 1.
Now we need to get terms like those in Eqs. 2.5, generally of the form Re(eiθ 〈0|R†k,iRq,j |0〉)

where Rk,i = RNv ...Riσk,i...R1 and σk,i is a Pauli matrix originating from the derivative.
First, how to get expectation values with Hermitian conjugate operators? To see how, recall

that if U has eigenvalue eiφ, then U † has eigenvalue e−iφ. Up to a global phase, we can get e−iφ on
the |1〉 state of an ancilla qubit by performing an anti-controlled U rather than controlled U .

Now let’s figure out how to get 〈0|U †V |0〉 = 〈U †V 〉. To the system register, add the ancilla
qubit in a superposition state. Define Ṽ = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ V and Ũ = |0〉 〈0| ⊗U + |1〉 〈1| ⊗ I.
Note that these operators commute. Apply these operators to the combined ancilla and system
registers and measure σ+ = σx + iσy = |0〉 〈1| on the ancilla. That measurement will give:

〈ψ0|Ṽ †Ũ †(σ+ ⊗ I)Ũ Ṽ |ψ0〉 = 〈ψ0| |0〉 〈0| ⊗ U †(|0〉 〈1| ⊗ I) |1〉 〈1| ⊗ V |ψ0〉 (2.8)

Taking |ψ0〉 = (|0〉+ |1〉)/
√
2⊗ |ψs〉, we get

〈σ+〉 = 1

2
〈ψs|U †V |ψs〉 (2.9)

and so 2 〈σ+〉 = 〈U †V 〉. In practice, we get 〈σ+〉 by measuring σx and σy and computing
σx + iσy.

However, 〈U †V 〉 was not actually what we wanted - we need the real part of it. To get that, we
combine the above discussion about measuring Re(eiθ) with this discussion. Specifically, we apply
Ũ Ṽ , then H ⊗ I, then measure the ancilla qubits. The probability to measure 0 is:

p(0) =
1

4
〈ψs|(U † + V †)(U + V )|ψs〉 (2.10)

Recalling that Re(U †V ) = (U †V + V †U)/2, we see that Re(U †V ) = 2p(0)− 1.
This result is almost what we want. For the last step, first examine how to obtain 〈T †ATB〉.

To compute it, let U † = T †A and V = TB. To compute U †, we implement U with anti-control.
Notice in the circuit with both U and V that T is both controlled and anti-controlled, meaning it
is always applied! So the circuit ends up as c-B, T, c-A† with no control needed on the T operator.

Finally, we return to 〈ψ0|R†k,iRq,j |ψ0〉. Start with the ancilla in (|0〉 + exp(iθ) |1〉)/
√
2. The

circuit will consist of a bunch of controlled R gates for the k, i operator, then a bunch of anti-
controlled gates for the q, j operator. It can be simplified as follows: assume that k < j. All the
anti-controlled gates R1...σk,i can be commuted past the controlled gates to yield R1...Ri−1 without
any control, then anti-controlled σk,i then uncontrolled Ri...Rj−1, then controlled σq,j . The rest
of the gates are not needed since they act only on the system register and end up being cancelled
by their Hermitian conjugates in the measurement process. This circuit, which gives the matrix
elements for the matrix Ai,j is illustrated as Fig 4 in the referenced paper and Fig 2 of Ref. [4]. The
circuit for the entries of ci is similar (given also in Fig 4 of McArdle paper) except all the Ri gates
must be implemented followed by hα at the end.
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