A numerical introduction to tensor networks for quantum simulation Austin Minnich, California Institute of Technology Fall 2019 [Credit for course materials: Prof. Jan von Delft] #### 1. Why tensor networks? Tensor networks provide a flexible description of quantum states. In some cases, they are efficient - can accurately describe state with polynomial resources. Example: spin- 5 chain, with N sites: Local state space of site (100) (1 Local state label: Local dimension: $$d = \lambda st$$ Shorthand: Index on state label suffices to identify the site Hilbert space () Generic basis state for full chain of length N (convention: add state spaces for new sites from left): Hilbert space for full chain: Generic quantum state: $|\psi\rangle_{N} = \sum_{\sigma_{1} \dots \sigma_{N}} |\sigma_{1} \dots \sigma_{N}| C$ Dimension of full Hilbert space $\mathcal{H}^{\mathcal{N}}$: $\mathcal{A}^{\mathcal{N}}$ (# of different configurations of $\overline{\mathfrak{o}}$) Specifying $(4)^{N}$ involves specifying $(4)^{N}$, i.e. $(4)^{N}$ different complex numbers. is a tensor of rank (rank = # of legs) Graphical representation: (one leg for each index) Claim: such a rank L tensor can be represented in many different ways: MPS: matrix product state PEPS: projected entangled-pair state arbitrary tensor network rightal indices - -a link between two sites represents entanglement between them - -different representations -> different entanglement book-keeping - -tensor network = entanglement representation of a quantum state #### 2. Iterative diagonalization Consider a spin-s chain with Hamiltonian $$H^{N} = \sum_{k=1}^{N-1} \overline{s}_{e} \cdot \overline{s}_{e+1} + \sum_{k=1}^{N} \overline{s}_{k} \cdot \overline{h}_{k}$$ $$(example)$$ local state space for site $$l$$: l $= l$ We seek eigenstates of $$H^{N}$$: $H^{N}(E_{N}^{N}) = E_{N}^{N}(E_{N}^{N})$ (EN) = eigenvalue EN = eigenvalue (EN) EMN ; $$\alpha = 1 - 2^{N}$$ Diagonalize Hamiltonian iteratively, adding one site at a time. N = 1: Start with first site, diagonalize H in Hilbert space H'. Eigenstates have form $(d7 = (E_{K}7 = 10)) A^{\sigma_{1}} C^{\sigma_{1}} C^{\sigma_{2}} C^{\sigma_{3}} C^{\sigma_{4}} C^{\sigma_{4}} C^{\sigma_{5}} C^{\sigma_{4}} C^{\sigma_{5}} C$ (sum over implied) coefficient matrix combining 'incoming' into 'outgoing' 🗶 N = 2: Add second site, diagonalize H^{λ} in Hilbert space H^{λ} 187=1E/3)= 10,70 kg Baox (p=1,..dd) coefficient matrix FCASE/ combining 'incoming' (into 'outgoing') (entactions matric rultiplication N = 3: Add third site, diagonalize H^3 in Hilbert space H^3 Your try: $$|A| = |\sigma_3| \otimes |P| = |\sigma_3| \otimes |P| = =$$ = 10370 10270(017 A 01 B 02 C B 03 Continue similarly until having added site N. Eigenstates of $\mathcal{H}^{\mathcal{N}}$ have following structure: $$= |\overline{\sigma}_{N} / \overline{c}_{8} (MPS)$$ $$A_{a} B_{b} C_{r_{0}} \qquad \mu \int_{\sigma_{N}} S$$ $$\sigma_{1} \sigma_{2} \sigma_{3} \qquad \sigma_{N}$$ Nomenclature: = physical indices, $$\alpha, \beta, \delta$$ = (virtual) bond indices Alternative, widely-used notation: 'reshape' coefficient tensors as $$\tilde{A}_{\alpha}^{\sigma_{i}} \leq A_{\alpha}^{\sigma_{i}}$$ to highlight 'matrix product' structure in noncovariant notation: $$[S] = [\sigma_{N} \gamma_{0} ... \otimes [\sigma_{i} \gamma_{i} \tilde{A}_{\alpha}^{\sigma_{i}} \tilde{B}_{\alpha}^{\sigma_{k}} \tilde{C}_{\beta}^{\sigma_{k}} ... \tilde{D}_{\mu}^{\sigma_{N}}]$$ #### Comments 1. Iterative diagonalization of 1D chain generates eigenstates whose wave functions are tensors that are expressed as matrix products -> matrix product states (MPS) Matrix size grows exponentially. "Hilbert space is a large place!" Numerical costs explode with increasing N, so truncation schemes are needed. Truncation can be done in a controlled way using tensor network methods. Standard truncation scheme: use $\alpha_{\ell} \beta_{\ell} \delta_{\ell} \delta_{\ell} \leq 0$ for all virtual bonds 2. Number of parameters available to encode state: NMPS $\leq N \cdot D^{\lambda} \cdot d$ $\hat{C} = \text{if all virtal bonds}$ hu dia. θ P A A t [equal if all virtual bonds have same dimension D] N If ¼ is large: Nows Loc of Remarkable fact: for 1d Hamiltonian with local interactions and a gapped spectrum, its ground state can be accurately represented by MPS! Reason: Area law for entanglement entropy. We will discuss later. #### 3. Covariant index notation More detail of covariant index notation is in L2 & L10 of "Mathematics for Physicists", Altland & von Delft, see here. Kets (Hilbert space vectors) For kets, indices are down. E.g. basis kets: Convention For components of kets (wrt a basis), indices are upper: 472 Repeated indices (always up-down pairs) are always summed (implied summation). Example: linear combination of kets. Your try: Answer: $|407 = |407 A_{00}^{0}$ produce a ket Note: for A the index of identifies components of kets -> upper the index didentifies components of basis kets -> lower Basis for direct product space: Note ket order: start with first space on very right, successively attach new spaces from left. Linear combinations: Your try: Answer: Bras (Hilbert space dual vectors) For bras, indices are upper. E.g. basis bras: For components of bras (wrt a basis), indices are lower: Complex conjugation: offosik orden Linear combinations of bras: Your try: Answer: Complex conjugation: Note: for A_{σ}^{\bullet} , the index the index **o** identifies basis bras (dual vectors) hence upper () of identifies components of bras (dual vectors) hence lower Basis for direct product space: Note bra order: opposite to kets so expectation values yield nested bra-ket pairs: Linear combinations: Complex conjugation: Orthonormality If $|\phi_0\rangle$ form orthonormal basis: $|\langle \phi_0\rangle| = |\phi_0\rangle$ If $|\psi_{\sigma}\rangle$ form orthonormal basis, too: $|\psi_{\sigma}\rangle = |\psi_{\sigma}\rangle$ $S_{\alpha'}^{\alpha} = \langle \Psi^{\alpha} | \Psi_{\alpha'} \rangle = A_{\sigma}^{\dagger} \langle \sigma | \sigma' \rangle A_{\alpha'}^{\sigma'}$ $= A^{\dagger a} A^{\sigma} = (A^{\dagger} A)^{\alpha}$ Hence A is unitary: $I = A^{\prime}A \Rightarrow A^{\prime} = A^{\dagger}$ Operators Operators OF = [POTO of CAO] A or At: Ut indices Incoming acrows Arr At: down outgainy acrows index order #### Simplified notation It is customary to simplify notational conventions for kets and bras. In kets, use subscript indices as ket names: $|\phi_{\vec{\sigma}}\rangle = |\vec{\sigma}\rangle = |\vec{\sigma}\rangle = |\vec{\sigma}\rangle$ In bras, use superscript indices as bra names: Now up/down convention for indices is no longer displayed but it still implicit! Linear combination of kets: $| \chi \rangle = | \sigma \rangle A d$ Coefficient matrix = overlap: $A_{\alpha} = \langle \sigma | \alpha \rangle$ If direct products are involved: $|\beta\rangle = |\sigma_{a}79|\sigma_{c}\rangle A^{\sigma_{c}\sigma_{c}}$ Coefficient matrix = overlap: $$A^{\sigma_i \sigma_L} = C_{\sigma_i} \log C_{\sigma_i} \beta 7$$ Operators: $\partial = |\vec{\sigma}\rangle \partial \vec{\sigma} |\langle \vec{\sigma}'|$ $\partial \vec{\sigma} | = |\vec{\sigma}\rangle \partial |\vec{\sigma}'\rangle$ In the overlaps: bra indices: $\underbrace{\mathsf{upper}}$ on \bigwedge or \bigwedge , as incoming arrows ket indices: lower on A or A^{\bullet} , as outgoing arrows Linear combo of Gras: $\angle \alpha I = A^{+\alpha} \cdot \angle \alpha I$ Coefficient matrix: $A^{+\alpha} = \angle \alpha I \cdot \sigma I$ $= \overline{Cold7} = \overline{A^{\sigma}_{\Lambda}} \quad (Hernitian crasingate)$ Direct products: $\langle \beta | = A^{+\beta} | C_{\sigma_{\alpha} \sigma_{\beta}} | C_{\sigma_{\alpha}} | \Theta C_{\sigma_{\alpha} \sigma_{\beta}} |$ Coefficient natrix: $A^{+\beta} = \langle \beta | \sigma_{\lambda} \rangle \partial \sigma_{\lambda} \rangle = \overline{A^{\sigma_{\lambda} \sigma_{\lambda}}} = \overline{A^{\sigma_{\lambda} \sigma_{\lambda}}}$ #### 4. Entanglement entropy and Area Laws (introductory comments) Consider a quantum system in state 4, with density matrix $\hat{p} = 4$ Divide system into two parts, A . Suppose A has linear dimension L To obtain reduced density matrix of \mathcal{A} (or \mathcal{B}), trace out \mathcal{B} (or \mathcal{A}) 'reduced density matrix' for $A : \hat{\beta}_A = T_A \hat{\beta}$ $\left(\hat{\beta}_B = T_A \hat{\beta}\right)$ 'Entanglement entropy' of A and C: SALB = - Tra PA los, PA = - & Wa los, Wa Leisenurlues of PA Key result: for Hamiltonians with only local interactions, $\frac{1}{16}$ is governed by an 'area law': $S = S_{ACS}$ \sim (area of boundary of A) $= \partial A$ in 3D for gapped system in 2D for gapped system in 1D for gapped system $\underbrace{\text{ToL}_{1} E_{1} - E_{2} = 0}$ in 1D for *gapless system Excited state? Now consider an MPS of maximal bond dimension D: Divide system into two parts: Left -> 2 sites, Right -> 2 sites X=1 inflicit son over X =entangled superposition of two state spaces, each having dimension of at most D (After the sum over has been performed explicitly using Kronecker delta, result contains non-covariantly paired indices Density matrix: $$\hat{\rho} = |4\rangle\langle4| = \sum_{k,k'} |k\rangle_{k} |k\rangle_{k} \leq \lambda' |k\rangle_{k}$$ Reduced density matrix: $$\hat{p}_{A} = Tr_{B} \hat{p} = \sum_{M} \{ M \{ \sum_{k,k'} |M_{k}| \} \} \{ \lambda^{k'} \lambda^{k$$ MCE 201, APh 250/Minnich Module 1 Page 16 of 24 with matrix elements $$(PA)_{\lambda'} = \sum_{n} (PA)_{\lambda'} (PA)_{\lambda$$ This matrix has rank $\not = \not D$ (say Let $\mathbf{W}_{\mathbf{A}}$ be its eigenvalues, with $\mathbf{X} = \mathbf{I}_{\mathbf{A}}$ and normalization Entanglement entropy: $$5 = -\frac{0}{8} W_{\alpha} I_{7} W_{\kappa}$$ Maximal if $$W_{\alpha} = \frac{1}{0}$$ for all α : $S = \frac{0}{0}$ for all α : $S = \frac{0}{0}$ for all α : 1D gapped: 1D critical: 2D gapped: 3D gapped: Conclusion: MPS can encode ground state efficiently for gapped and gapless systems in 1D, but not 2D or 3D! # 5. Tensor network diagrams [Orus 2014, Sec 4.1] 'tensor' = multi-dimensional array of numbers 'rank of tensor' = number of indices = # of legs rank-0: scalar rank-1: vector rank-2: matrix rank-3: tensor Index contraction: summation over repeated index $$\frac{C}{\alpha \qquad \gamma} \quad = \quad \frac{A}{\alpha \qquad \beta \qquad \gamma}$$ graphical representation of matrix product 'open index' = non-contracted index (here () 'tensor network' = set of tensors with some or all indices contracted according to some pattern Examples: Your try: $C = A_{\alpha}B^{\alpha}$ $D^{\alpha}_{\beta} = A^{\delta}_{\gamma}B^{\delta}_{\mu} \underbrace{C^{\mu\delta}_{\beta}}_{C^{\kappa}_{\delta}\beta}$ $$C = A \xrightarrow{B}$$ $$A \xrightarrow{A}$$ $$B \xrightarrow{A}$$ $$A \xrightarrow{B}$$ $$E = B \xrightarrow{\mu} C$$ $$A \xrightarrow{A}$$ $$A \xrightarrow{B}$$ $$C \xrightarrow{A}$$ $$A \xrightarrow{B}$$ Answer: #### Cost of computing contractions Result of contraction does not depend on order in which indices are summed, but numerical cost does! Example 1: cost of matrix multiplication is For every fixed \not and \not (\not combinations), sum over \not values of \not Cost = $0 \times 0_{8} \cdot 0_{8}$ (simplifies to 0^{3} if all bond dimensions are Example 2: First contraction scheme has total cost $\partial(0^5)$, second has Finding optimal contraction order is difficult. In practice, trial and error.... In first part of course we will focus on 1D tensor networks, then 2D. # 6. Singular value decomposition (SVD) [Schollwoeck2011, Sec 4] Any matrix M of dimension ocan be written as M=usut $$D \leq D': \qquad D \qquad = \qquad D \qquad D' \qquad D'$$ $$M \qquad = \qquad U \qquad S \qquad V^{\dagger}$$ $$D \geq D': \qquad D \qquad = \qquad D \qquad D' \qquad D' \qquad D'$$ ## Properties of S - square matrix of dimension - Dain & Dain - (Omh = Min(D,0')) - diagonal with non-negative diagonal elements (singular values) - Schmidt rank : number of non-zero singular values - · arrange in descending order: #### Properties of U: - · matrix of dimension - · columns are orthonormal # Properties of V[†]: - · matrix of dimension - · rows are orthonormal MMt Columns of are eigenvectors of MTM ### **Truncation** SVD yields optimal approximation of rank matrix by a rank matrix (optimal wrt Frobenius norm: Suppose M=USU + with M'=US'V+ Truncate: 10^{0} 10^{-6} with S'= dirs(S,... Sr', O... 0) Retain only largest singular values! Visualization, with $$D \leq D': \qquad D \qquad M \qquad = \qquad D \qquad D' \qquad D'$$ $$D \qquad M' \qquad = \qquad D \qquad D' \qquad D' \qquad D' \qquad D' \qquad D'$$ $$D \geq D': \qquad D \qquad M \qquad = \qquad D \qquad D' \qquad D'$$ $$D \qquad M' \qquad = \qquad D \qquad D' \qquad D' \qquad D'$$ $$D \qquad D' \qquad D' \qquad D' \qquad D'$$ $$D \qquad D' \qquad D' \qquad D' \qquad D'$$ $$D \qquad D' \qquad D' \qquad D' \qquad D'$$ # **QR** decomposition If singular values are not needed, matrix has the 'full QR decomposition' with Q a ρ unitary matrix $$QQ^{r} = Q^{r}Q = 1$$ and R a Dro upper triangular matrix If $D \ge D'$, then M has the 'thin QR decomposition' $$M = (Q_{(,Q_{+})} \cdot \begin{pmatrix} R_{()} \\ 0 \end{pmatrix}) = Q_{(,R_{()})}$$ with dim(Q1) = $\int \mu \int$, dim(R1) = $$\sqrt{X}$$, and R1 upper triangular. QR is numerically cheaper than SVD but has less information (does not provide rank).