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A numerical introduction to tensor networks for quantum simulation 
Austin Minnich, California Institute of Technology


Fall 2019


[Credit for course materials: Prof. Jan von Delft]


1. Why tensor networks?


Tensor networks provide a flexible description of quantum states.


In some cases, they are efficient - can accurately describe state with polynomial resources.


Example: spin-       chain, with       sites:


Local state space of site                : 


Local state label:


Local dimension:


Shorthand:


Index             on state label                     suffices to identify the site Hilbert space 


Generic basis state for full chain of length N 

(convention: add state spaces for new sites from left):
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Hilbert space for full chain:


Generic quantum state:


Dimension of full Hilbert space            :                          (# of different configurations of              )


Specifying         involves specifying            , i.e.                 different complex numbers.

                                     


	 	 is a tensor of rank             (rank = # of legs)


Graphical representation: (one leg for each index)


Claim: such a rank L tensor can be represented in many different ways:


MPS: matrix product state


PEPS: projected entangled-pair state
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arbitrary tensor network


-a link between two sites represents entanglement between them


-different representations -> different entanglement book-keeping


-tensor network = entanglement representation of a quantum state


2. Iterative diagonalization


Consider a spin-s chain with Hamiltonian


local state space for site               :


We seek eigenstates of                 :
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Diagonalize Hamiltonian iteratively, adding one site at a time.


N = 1: Start with first site, diagonalize             in Hilbert space              . Eigenstates have form


(sum over        implied) 	 	 coefficient matrix	 	 combining ‘incoming’      into ‘outgoing’


N = 2: Add second site, diagonalize           in Hilbert space               :

 


(sum over        implied) 	 	 coefficient matrix	 combining ‘incoming’         into ‘outgoing’


N = 3: Add third site, diagonalize               in Hilbert space                :


Your try:
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Answer:


Continue similarly until having added site N. Eigenstates of           have following structure:


Nomenclature:                       = physical indices,                                    = (virtual) bond indices 


Alternative, widely-used notation: ‘reshape’ coefficient tensors as


to highlight ‘matrix product’ structure in noncovariant notation:
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Comments


1. Iterative diagonalization of 1D chain generates eigenstates whose wave functions are 
tensors that are expressed as matrix products -> matrix product states (MPS) 


Matrix size grows exponentially.


for given             ,                        has dimension                         (vector) 


for given             ,                        has dimension                         (rectangular matrix) 


for given             ,                        has dimension                         (larger rectangular matrix) 





“Hilbert space is a large place!”


Numerical costs explode with increasing N, so truncation schemes are needed.


Truncation can be done in a controlled way using tensor network methods.


Standard truncation scheme: use                                      for all virtual bonds





'matrix product state'  (MPS)

Alternative, widely-used notation: 'reshape' the coefficient tensors as

to highlight 'matrix product' structure in noncovariant notation:

Such states an called 'matrix  product states' (MPS)

Matrix size grows exponentially:

has dimension                    (vector)

has dimension                    (rectangular matrix)

has dimension                    (larger rectangular matrix)

for given        ,

for given        ,

for given        ,

Nomenclature: = physical indices, = (virtual) bond indices

Comments

1. Iterative diagonalization of ID chain generates eigenstates  whose wave functions are tensors that 
are expressed as matrix products.

   Page 4   

"Hilbert space is a large place"

Numerical costs explode with increasing N, so truncation schemes will be needed...

Truncation can be done in controlled way using tensor network methods!

  for all virtual bondsStandard truncation scheme: use

Number of parameters available to encode state:2.

would be '=' if all virtual bonds have the same dimension, D

scales linearly with system size, 

If L is large: 

Why should this have any chance of working?  Remarkable fact: for 1d Hamiltonians with local 
interactions and a gapped spectrum, ground state can be accurately represented by MPS!

Why?   'Area laws'!  See section 4. 
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2. Number of parameters available to encode state:


[equal if all virtual bonds have same dimension D]


If L is large:


Why should we expect this ansatz with polynomial parameters to accurately represent a 
quantum state?


Remarkable fact: for 1d Hamiltonian with local interactions and a gapped spectrum, its ground 
state can be accurately represented by MPS!


Reason: Area law for entanglement entropy. We will discuss later.
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3. Covariant index notation


More detail of covariant index notation is in L2 & L10 of “Mathematics for Physicists”, Altland & 
von Delft, see here.


Kets (Hilbert space vectors) 

For kets, indices are down. E.g. basis kets:


For components of kets (wrt a basis), indices are upper:


Repeated indices (always up-down pairs) are always summed (implied summation).


Example: linear combination of kets. 


Your try:


Answer:


Note: for                     the index                 identifies components of kets -> upper


	             	 the index                identifies components of basis kets -> lower
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Basis for direct product space: 


Note ket order: start with first space on very right, successively attach new spaces from left.


Linear combinations:


Your try:


Answer:


Bras (Hilbert space dual vectors)


For bras, indices are upper. E.g. basis bras:


For components of bras (wrt a basis), indices are lower:


Complex conjugation:
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Linear combinations of bras:


Your try:


Answer:


Complex conjugation:


Note: for            , the index                identifies basis bras (dual vectors) hence upper


	 	     the index                identifies components of bras (dual vectors) hence lower


Basis for direct product space:


Note bra order: opposite to kets so expectation values yield nested bra-ket pairs:
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Linear combinations:


Complex conjugation:


Orthonormality


If                   form orthonormal basis:


If                      form orthonormal basis, too:


Combined:


Hence A is unitary:


Operators
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Simplified notation


It is customary to simplify notational conventions for kets and bras.


In kets, use subscript indices as ket names:


In bras, use superscript indices as bra names:


Now up/down convention for indices is no longer displayed but it still implicit!


Linear combination of kets:


Coefficient matrix = overlap:


If direct products are involved:


Coefficient matrix = overlap:


Operators:
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In the overlaps:


bra indices: upper on            or                , as incoming arrows


ket indices: lower on             or               , as outgoing arrows
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4. Entanglement entropy and Area Laws (introductory comments)


Consider a quantum system in state           ,  with density matrix


Divide system into two parts,                    . Suppose             has linear dimension               .


To obtain reduced density matrix of             ( or            ), trace out             ( or              )


‘reduced density matrix’ for            :


‘Entanglement entropy’ of              and               : 


Key result: for Hamiltonians with only local interactions,              is governed by an ‘area law’:


(area of boundary of               )


in 3D for gapped system


in 2D for gapped system


in 1D for gapped system


in 1D for *gapless system
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Now consider an MPS of maximal bond dimension D:


Divide system into two parts: Left -> 2 sites, Right -> 2 sites


=entangled superposition of two state spaces,

each having dimension of at most D


(After the sum over          has been performed explicitly using

Kronecker delta, result contains non-covariantly paired indices


Density matrix:


Reduced density matrix:


(introductory comments)

Divide system into two parts,      and    . Suppose        has linear dimension      .

'reduced density matrix' for     :

Consider quantum system in state           , with density matrix 

and 

'Entanglement entropy' of     and     :

eigenvalues of

It turns out: for Hamiltonians with only local interactions,             is governed by an 'area law':

(area of boundary of        )

in 3D for gapped system

in 2D for gapped system

in 1D for gapped system

in 1D for gapless system

Now consider an MPS of maximal bond dimension D:

(After the sum over     has been performed explicitly using the 
Kronecker  delta, the result contains non-covariantly paired indices.)

suppress     henceforth

TNB4

To obtain reduced density matrix of      (or    ), trace out     (or      ):

divide systems into two parts: Left: 2 sites, Right: 2 sites

system          system 

= entangled superposition of two state spaces, 
   each having dimension of at most D 

unit tensor  

4. Entanglement Entropy and Area Laws
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with matrix elements


This matrix has rank 	 	 (say              )      


Let             be its eigenvalues, with 


and normalization 


Entanglement entropy: 


Maximal if                  for all              :


1D gapped:


1D critical:


2D gapped:


3D gapped: 
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Conclusion: MPS can encode ground state efficiently for gapped and gapless 
systems in 1D, but not 2D or 3D!


5. Tensor network diagrams 
[Orus 2014, Sec 4.1]


‘tensor’ = multi-dimensional array of numbers


‘rank of tensor’ = number of indices = # of legs


rank-0: scalar


rank-1: vector


rank-2: matrix


rank-3: tensor


Index contraction: summation over repeated index




              


               


    = ‘bond dimension’ of index 


‘open index’ = non-contracted index         (here                     )


[Orus 2014, Sec. 4.1] TNB5

'tensor' = multi-dimensional array of numbers 

'rank of tensor' = number of indices = # of legs 

rank-0:   scalar

rank-1:   vector

rank-2:   matrix

rank-3:   tensor

Index contraction: summation over repeated index

= 'bond dimension' of index 
graphical representation of matrix product

(depends on context, can be different for each index; is often/usually not written explicitly)

'open index' = non-contracted index     (here      ,       )

'tensor network  = set of tensors with some or all indices contracted according to some pattern

Examples:

scalar vector    dual vector

Trace of matrix product:

5. Tensor network diagrams
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‘tensor network’ = set of tensors with some or all indices contracted according to some pattern


Examples:



Your try:


Answer:


[Orus 2014, Sec. 4.1] TNB5

'tensor' = multi-dimensional array of numbers 

'rank of tensor' = number of indices = # of legs 

rank-0:   scalar

rank-1:   vector

rank-2:   matrix

rank-3:   tensor

Index contraction: summation over repeated index

= 'bond dimension' of index 
graphical representation of matrix product

(depends on context, can be different for each index; is often/usually not written explicitly)

'open index' = non-contracted index     (here      ,       )

'tensor network  = set of tensors with some or all indices contracted according to some pattern

Examples:

scalar vector    dual vector

Trace of matrix product:

5. Tensor network diagrams
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Cost of computing contractions


Result of contraction does not depend on order in which indices are summed, but numerical 
cost does!




Example 1: cost of matrix multiplication is 


For every fixed            and                  (                      combinations), sum over           values of 


Cost =                               (simplifies to                  if all bond dimensions are               )






Example 2: 





Cost of computing contractions

Result of contraction does not depend on order in which indices are summed, but numerical cost does !

Example 1: cost of matrix multiplication is

Cost = 

For every fixed        and           (                 combinations), sum over          values of 

(simplifies to           if all bond dimensions are =     )

Example 2:

contracting 

independent of      !!

Finding optimal contraction order is difficult problem! In practice: rely on experience, trial and error…

In first two-thirds of course, we will focus on 1D tensor networks. 2D will come after that.

First contraction scheme has total cost                    ,  second has                      !!

contracting contracting 

contracting contracting 
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First contraction scheme has total cost                 , second has                                  !


Finding optimal contraction order is difficult. In practice, trial and error….


In first part of course we will focus on 1D tensor networks, then 2D.


6. Singular value decomposition (SVD)


[Schollwoeck2011, Sec 4]


Any matrix              of dimension                    can be written as





Properties of S


• square matrix of dimension


• diagonal with non-negative diagonal elements (singular values)


• Schmidt rank           : number of non-zero singular values


• arrange in descending order:


Any matrix          of dimension                can be written as 

Properties of S

square matrix, of dimension                                  , with x

diagonal, with non-negative diagonal elements, called 'singular values'x

'Schmidt rank'       : number of non-zero singular valuesx

arrange in descending order:x

zeros

Properties of     :    

matrix of dimensionx

columns are orthonormal:x

Properties of      :       

matrix of dimensionx

rows are orthonormal:x

TNB6[Schollwoeck2011, Sec. 4]6. Singular value decomposition (SVD)
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Properties of U:


• matrix of dimension


• columns are orthonormal


Properties of           :


• matrix of dimension


• rows are orthonormal


Useful properties:


Any matrix          of dimension                can be written as 

Properties of S

square matrix, of dimension                                  , with x

diagonal, with non-negative diagonal elements, called 'singular values'x

'Schmidt rank'       : number of non-zero singular valuesx

arrange in descending order:x

zeros

Properties of     :    

matrix of dimensionx

columns are orthonormal:x

Properties of      :       

matrix of dimensionx

rows are orthonormal:x

TNB6[Schollwoeck2011, Sec. 4]6. Singular value decomposition (SVD)
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So columns of               are eigenvectors of    


Columns of                 are eigenvectors of 


Truncation


SVD yields optimal approximation of rank            matrix                by a rank            matrix      


(optimal wrt Frobenius norm:                                                      )





Suppose


with 


Truncate:


with


(1), (3), (4) imply:

So, columns of          are eigenvectors of             ,    and columns of         are eigenvectors of   

Truncation

SVD yields optimal approximation of rank       matrix         by a rank                    matrix          : 

(optimal w.r.t. the Frobenius norm:                                                  )     

Suppose

with

zeros

Truncate: 

with

zeros

Visualization, with                     :Retain only      largest singular values!
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Retain only           largest singular values!           Visualization, with                        :








QR decomposition


If singular values are not needed,


a                      matrix


has the ‘full QR decomposition’


(1), (3), (4) imply:

So, columns of          are eigenvectors of             ,    and columns of         are eigenvectors of   

Truncation

SVD yields optimal approximation of rank       matrix         by a rank                    matrix          : 

(optimal w.r.t. the Frobenius norm:                                                  )     

Suppose

with

zeros

Truncate: 

with

zeros

Visualization, with                     :Retain only      largest singular values!
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QR-decomposition

If singular values are not needed, 

a                 matrix          

has the 'full QR decomposition'

If D ൒ D', then M has the 'thin QR decomposition'

and           a                  upper triangular matrix, if

with          a                  unitary matrix,      

                                  but                     

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').

with dim(Q1) =               ,     dim(R1) =               ,   

and R1 upper triangular.
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with              a                   unitary matrix


and               a                  upper triangular matrix





If , then M has the ‘thin QR decomposition’


with dim(Q1) =                          , dim(R1) =                ,


and R1 upper triangular.


QR is numerically cheaper than SVD but has less information (does not provide rank).


D ≥ D′�

QR-decomposition

If singular values are not needed, 

a                 matrix          

has the 'full QR decomposition'

If D ൒ D', then M has the 'thin QR decomposition'

and           a                  upper triangular matrix, if

with          a                  unitary matrix,      

                                  but                     

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').

with dim(Q1) =               ,     dim(R1) =               ,   

and R1 upper triangular.
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