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[credit for course materials: Prof. Jan von Delft]

Gamma-Lambda Notation, iTEBD, DMRG II

Vidal’s I'A notation

[Vidal2003, Schollwock2011 Sec 4.6]

We have studied the usual bond-canonical form of MPS:

Choose diagonal, and call it (following Vidal):

In this format, the reduced density matrices of left and right parts are diagonal, with

eigenvalues
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Vidal introduced a representation for an MPS in which a Schmidt-decomposition can

be directly read off for each bond:

where is a diagonal matrix consisting of Schmidt coefficients wrt to bond

with orthonormal sets on

Any MPS can be brought into I"A form. Proceed in same manner as when left-

normalizing:
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Successively use SVD on pairs of adjacent tensors:

but store singular values, and at end define:

Note: in numerical practice, this involves dividing by singular values,

So: first truncate states for which

Even then, the procedure can be numerically unstable, since arbitrarily small singular

values may arise. So, truncate states for which (say)
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Similarly, if we start from the right, SVDs yield right-normalized tensors, and we

can define:

So, relation between standard bond-canonical and ‘canonical I'A form’ is:

Infinite Time-Evolving Block Decimation (iTEBD)

[Vidal2007, Schollwock2011, Sec 10.4]

Goal: ground state search for infinite system while exploiting translational invariance.

We will use Vidal’s notation but everything can be translated into notation.

Basic idea: ‘imaginary time evolution’:

Reason: high-energy states die out quickly (if ground state is gapped):
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1. Trotter decomposition of time evolution operator
[Schollwock 2011, Sec 7.1.1]

General: write Hamiltonian as

Then all odd terms mutually commute, and all even terms mutually commute:

Divide time interval into L slices:

‘first order Trotter approx’

‘Second order Trotter approx
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Exploiting commuting properties of odd/even terms, each exponential can be

expanded separately without further approximation:

So, when applying to , we can successively apply all odd terms, then

truncate, then all even ones, then truncate, etc.

In MPO notation:

since factorizes, even bonds have dimension

since factorizes, odd bonds have dimension
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All of this can be done for finite chain of length . But a simplification occurs for

Then we can exploit translational invariance:

Adopt a two-site unit cell (no left- or right- normalization implied).
Step 1: time-evolve ‘odd bond’:

[odd: first site odd, second is even]

Step 2: time-evolve (updated!) even bond:

[even: first site even, second site odd]

Iterate until convergence! (To discuss details, we will use notation.)

iTEBD is a ‘power method’: the projector to the ground state is constructed as an

increasing number of powers of
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This is to be contrasted to DMRG ground state search, which is a variational method.
Main advantage of iTEBD: costs not proportional to system size, hence cheaper.
Main disadvantage: loss of orthogonality due to projection without explicit

reorthogonalization.

2. ITEBD: Explicit formulation
[Vidal 2007, Schollwock2011, Sec 10.4]

Use two-site unit cell, , repeated periodically,

and express it in notation:

[to avoid cluttering, indices on are not displayed but implicit]
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Each iTEBD iteration involves two steps:

Step 1: Time-evolve odd bond using

Now, is projector (not unitary) hence reduces norm. Thus, is normalized

to unity by hand:
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This is update of odd bond. The updated MPS now has the form

Updated bond energy:

Updating odd bonds lower , slightly raises
(‘odd bond happy, even bond slightly unhappy)

Step 2: Time-evolve even bond, using
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This completes update of even bond. Updated MPS now has the form

Compute updated bond energy using same equation as before but with o <-> e.

As before, updating even bond lowers , slightly raises

Now iterate (apply , then , etc) until convergence (monitor ground state

energy).

Remarks:

1. Computation of can become unstable because singular values can be
small. Thus: truncate by discarding smallest singular values , then invert.

2. Note that , is left-normalized but is not!

‘Loss of orthogonality’. This causes problems when computing expectation values. For

example, odd bond energy, given by:
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does not reduce to earlier expression because zippers cannot be closed from left and

right. Hence our evaluation for energy involves an approximation.

Summary remarks on iTEBD:

Main advantage of iTEBD: costs not proportional to system size, hence comparatively
cheap. Main disadvantage: loss of orthogonality due to projection, without explicit

reorthogonalization.
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3. Improvements

1. Hasting’s trick

Performing iTEBD involves inverting a singular value matrix, which could lead to the
numerically unstable process of dividing by small singular values (even after
truncation).

Hastings [Hastings2009 Sec IIA, Schollwock2011 Sec 7.3.2] reported a method to
avoid this division by a series of contractions and SVDs. For this class | just want to
make you aware of it; due to time constraints | will not go through it.

2. Orthonormalization

Correlators via transfer matrix [Schollwock2011, Sec 10.5.1]

Recall that an infinite, translationally invariant MPS with two-site unit cell is called
‘canonical’ if are left-normalized and are right-normalized.

Correlators can then be computed using transfer matrix methods:
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Problem: iTEBD (including Hastings’ version) yields infinite MPS that are not in
canonical form, due to loss of orthogonality. It is possible to restore orthogonality
(albeit at the cost of inverting singular value matrices).

[Orus2008, Schollwock2011 Sec 10.5]

R

:Uz’—"¢—-n3§ EIrite TH

v Y'AX
%

iy A
= A\ VX7 A A
(ED: "cﬁ ”g(Y) lob JiL L 'y oy
UArV UAV
(iii) (lV) )(\’{ Y(yl)1 7[ . —

A
ATATA :V:‘F:\ :\.;Y’/:’ e Ly x‘
r VX;‘I" _(,Y’);j _o-,-.-,—g— —_ | X{V,,:n
= = " v’ ')“ of J¥an] . Vv’ X)

(Emary xy lI1(1/') ™ —
i | A ( \

canonical form

i
I_n]l

DMRG lI: tDMRG, purification for finite temperature

1. Time-dependent DMRG (tDMRG)
[Daley2004, White2004]

Invented in 2004 by Daley, Kollath, Schollwock, Vidal, and independently by White,
Feiguin.
Goal: to compute

Time-evolution operator for nearest-neighbor interactions

Even-odd decomposition of Hamiltonian:
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Trotterize:

Time-evolution protocol [Schollwock2011, Sec 7.1-7.3]

Construct MPO representations for , compute

(i) MPO:

(i) Evolve
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(iii) Compress: either ‘variationally’ (global) or ‘bond by bond’ (local)

Variational compression: First apply full MPO for to entire chain. Then variationally
minimize
This yields optimal (in variational sense) way to compress to

with given bond dimension.

Explicitly:

Sweep back and forth until overlap no longer changes. Then apply

Bond by bond compression

Apply to bond 1-2,



MCE 201, APh 250/Minnich Module 5 Page 16 of 21

then reshape, SVD, truncate, repeat for bond 3-4, 5-6, etc.

This approach keeps bond dimensions low throughout, hence is cheaper. However,
some interdependence of successive truncations may enter in, hence variational
compression is cleaner.

The difference between variational and bond-by-bond compression becomes
negligible for sufficiently small , because then the state does not change much

during a time step anyway, thus the effect of truncation is less.

With bond-to-bond compression, there is no need to split

Instead, Trotterize as follows:

[First order Trotter]

or [Second order Trotter]

Error analysis

(error per step) X (# of steps) =

linear in time; controllable by reducing



MCE 201, APh 250/Minnich Module 5 Page 17 of 21

Truncation error due to truncation of bond dimensions:

, grows exponentially!
Reason: under time evolution, state becomes increasingly more entangled, on a bond

entanglement entropy is

This is maximal if all singular values on bond are equal,

If Hamiltonian is changed abruptly (quench) such that global energy changes

extensively, then

[For less dramatic changes (e.g. local perturbation), entanglement growth is slower but
still significant.]

Bond dimension needed to encode entanglement entropy is given by

If, however, bond dimension is held fixed during time evolution, errors will grow

exponentially.
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A quantitative error analysis has been performed by [Gobert2005] on the exactly

solvable XX model:

[Gobert2005]
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2. Finite temperature: purification
[Verstraete2004, Schollwock2011 Sec 7.2.1]

General quantum-mechanical density matrix for a mixed state,

has three defining properties:

(1) Hermiticity:
(2) Positivity: Eigenvalues are non-negative

(3) Normalized
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Expectation values:

Purification
Can we represent in terms of a pure state?
Yes: double Hilbert space by introducing an ‘auxiliary’ state for each physical state,

and define ‘purified state’:

This can be viewed as a Schmidt decomposition of a pure state in doubled Hilbert
space.

Norm yields trace:

Tracing out auxiliary state space from (a pure DM in doubled Hilbert

space) yields physical density matrix (@ mixed DM in physical Hilbert space)
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Purified-state expectation values in doubled Hilbert space yield thermal averages in

physical space

If is not normalized, use

Thermal density matrix

Thermal density matrix is described by

Not normalized:

Purified version:
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= product state, with each factor describing maximal a-p entangled at site

Note: at , l.e. we have (all states are equally likely)

Protocol for finite-T DMRG calculations

Start from pure
product state in

doubled Hilbert space:

Perform imaginary-time evolution over a ‘time’ , acting only on physical space:

For thermal averages, trace out auxiliary space:
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