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Lecture 10: Unitary coupled cluster and VQE
Reading: O Malley et al PRX:6 031007 (2016)

1 VQE - unitary coupled-cluster

1.1 Introduction

Phase estimation is in principle a good method to get out energy eigenvalues, but the gate depths
required are out of reach even any but the simplest Hamiltonians which are not physically very
interesting. An alternative approach is to use a parametrized wave function (ansatz) as a guess,
hoping that it is of a form close to the actual ground state wavefunction, and figure out the param-
eters that minimize the energy. The energy measurement is done on a quantum computer, where
we take advantage of the ability to represent the entire Hilbert space, while the optimization of
parameters in ansatz is done with a classical routine.

This method is based on the Rayleigh-Ritz variational principle, which says the following. Say
we have a parametrized state \qb(g)) where § is a vector of parameters that specify the wavefunction.
Then,
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where FEj is the ground state energy. You can prove this in a few lines by expanding H in its
eigenbasis and looking at the terms in the sum. Therefore, we can find an estimate of Ey within
the wavefunctions allowed by the ansatz by finding f that minimizes the above functional.

Of course, we can and do perform this procedure classically. The advantage of quantum com-
puters is that we are no longer restricted by memory limitations to a polynomial number of states
over which to perform the expectation value. The QC can perform averages over the entire Hilbert
space and represent states with high degrees of entanglement with only a polynomial number of
operations.

The question then becomes with ansatz to use. One of the earliest ones to be suggested was the
unitary coupled cluster method [1]. Coupled cluster is an ansatz originating in nuclear physics that
is derived from many-body perturbation theory from the HF state |®g) (a single Slater determinant).
It is now widely used for quantum chemistry. It expresses the wavefunction |¥) as:

|¥) = e [@o) (1.2)

where T' = T7 +T5+ ... is an excitation operator. The individual operators have the following forms:

T, = ) taba, (1.3)
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We think of T as a single excitation operator and 75 as a double excitation operator. If we
continue excitations to T, we reach the exact FCI limit. Of course we always have to truncate the
series, often at double excitations.


https://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.031007
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While coupled-cluster is highly successful on classical computers, it cannot be directly imple-
mented on a QC since e is not unitary. An alternative that fixes this problem is the unitary coupled
cluster method where the excitation operator is defined as T'— T'f. This operator is anti-Hermitian
and thus when exponentiated yields a unitary operator. Classically, UCC is not tractable because
it leads to a series that does not converge. Fortunately, unitaries can be implemented on a QC with
no trouble, and so UCC therefore is a good candidate for an ansatz for VQE.

1.2 Example: minimal basis H,

We will not go into all the details of implementing UCC for an arbitrary problem. Instead we will
focus on minimal basis Hs. In this case, the parametrization of the wavefunction is especially easy
because there is only one parameter:

[6(6)) = =¥ |01) (1.5)

For any 6 this unitary is easy to apply. We then need a way to get the energy expectation value.
We don’t want to use phase estimation since it requires large gate depth, and the whole point of
VQE was to decrease gate depth!

The approach we can use is called Hamiltonian averaging. A local Hamiltonian H (after an
appropriate transform) can generally be expanded as:

H=Y Hyg, (1.6)
.

where Hy = 0§ ® 011’ ® ... ® oF where the superscripts indicate X, Y, Z, or I Pauli matrix and the
subscript indicates qubit number. Each subterm is individually a Hermitian operator, and so it has
a spectral decomposition:

Hy = Z)‘i [ Ai) (il (1.7)

Therefore,

(B(0)|Hy|¢(0) ZA (BXi) (Ailo) = ZAWIA (1.8)

Recall how measuring a qubit works. When we measure, the system collapses into an eigenstate
with probability [(¢|A\;)|?. Therefore, measuring the probability to observe a given eigenstate by
repeated measurement gives us the probability and hence the term |(¢|\;)[?>. We can get the
eigenvalues for a Pauli string, and therefore get the expectation value as:

In a little more detail, say we need to obtain the expectation value of the string XoZ1Ys. After
applying the unitary to get to the state [1)(6)), we should rotate our basis so that each operator is
diagonal. Explicitly, we would apply H = R,(—n/2) to qubit 0 and R,(—n/2) for qubit 2. We don’t
need to do anything to qubit 1 since Z is diagonal in the computational basis. We then measure in
the computational basis, getting bit strings with certain probabilities corresponding to the overlap
of the state with the various eigenstates. These probabilities are what we need for computing the
expectation value. Note that the number of eigenstates scales exponentially with the length of the
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Pauli string so we hope the strings are not too long. The nice log scaling of the length of Pauli
strings with the BK transform is helpful here.
With each term determined, we get the expectation value of the Hamiltonian as:

(H)=7) (H,)=E(®) (1.9)

Y

Finally, once we have E(f), we use a classical optimization routine to find the parameters that
minimize the energy. That final value is an estimate for the ground state energy. In the HW, you
will try this algorithm out following [2].
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