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Lecture 17: Error mitigation
Reading: Temme, Bravyi, and Gambetta (IBM team) (2019).

1 Introduction
Fully fault-tolerant quantum computers are the device that we all wish we had. However, present
devices are not yet at the error thresholds needed to implement error correction, and even if they
were, we still are working out the engineering to include sufficient numbers of qubits to create a
single logical qubit. For near-term devices, our calculations will thus be exposed to errors, and the
effect of these errors is already obvious in estimates of observables in the papers we have seen in
this class.

The term “error mitigation” refers to schemes that seek to reduce the effect of the errors on the
measurement of observables rather than eliminate errors in a fault-tolerant manner. Several such
schemes have been proposed [1–7]. In this lecture we will focus on one of these schemes that has
been implemented experimentally and seems to perform well.

This scheme is based on extrapolation of an observable to the zero-noise limit based on mea-
surements with various amounts of noise. In this simulations, the noise is actually increased, by
means that we will see shortly, and the observables obtained with these different noise values are
used to extrapolate to zero noise.

2 Error extrapolation
In more detail, our general goal in quantum simulation is to estimate an observable 〈A〉 for an
evolved state ρλ(T ) after time T subject to noise characterized by λ. We would like the observable
in the limit λ→ 0. We can cancel the lower order contributions of the noise to the observable using
Richardson’s deferred approach.

To see how, let’s model the circuits not as gates, but rather as time-dependent Hamiltonian
dynamics specified by a term K(t). This term can generally be expanded as:

K(t) =
∑
α

Jα(t)Pα (2.1)

where Pα is a Pauli string.
The evolution of an open system with initial state ρ0 is given by a master equation:

∂ρ

∂t
= −[K, ρ] + λL(ρ(t)) (2.2)

for time t ∈ [0, T ]. For the scheme to work, we now have to make the following assumptions
for L: (1) it is invariant under time-rescaling and (2) it is independent of the time-varying terms
Jα(t). In words, these assumptions require that the noise is independent of the evolution of our
system of qubits. Generally, such an assumption does not seem to be so bad for qubits coupled to
an environment.

The goal of our simulation is to compute EK(λ) = tr(Aρλ(T ). It can be proved that there exists
an asymptotic expansion for EK(λ) in terms of λ. The proof sketch is to move to the interaction
picture, generate an iterative series expansion for the density matrix at time T , from which the
above statement follows. I will do the derivation in class, and it is in the SI of the Temme paper.
The upshot is that we can write:
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EK(λ) = E∗ +
n∑
k=1

akλ
k +Rn+1 (2.3)

where E∗ = tr(Aρ0(T )) is the observable without noise, ak are expansion coefficients, and Rn+1

is a remainder term that can be bounded.
To perform Richardson extrapolation, we need to run a quantum device at different noise rates

λj to obtain:

E′K(λj) = EK(λj) + δj (2.4)

where λj = cjλ are the rescaled experimental noise rates and δj is a deviation term. In the
Richardson extrapolation scheme, our estimate of E^* can be improved by computing:

E
′n
K (λ) =

∑
j=0

γjE
′
K(cjλ) (2.5)

n∑
j=0

γj = 1 (2.6)

n∑
j=0

γj(cj)
k = 0 (2.7)

(2.8)

The result is an approximation to E∗ accurate to O(λn+1). These equations follow from inserting
the expression for E′K(cjλ) as:

E
′n
K (λ) =

∑
j=0

γjE
′
K(cjλ) = E∗

n∑
j=0

γj

n∑
k=1

akλ
k

 n∑
j=0

γj(cj)
k

+ ... (2.9)

The main question now is how to obtain rescaled noise parameters? Having such a degree of
control would appear to be difficult because it requires control over the environmental coupling to
the qubits, which is a process that we are unable to even characterize completely.

Fortunately, it turns out that there is a trick to obtain the same effect without controlling the
noise explicitly. We can run the same circuit n+ 1 times with rescaled parameters in the evolution
term K(t), and that has exactly the same effect as if we had rescaled the noise parameter λ. The
rescaling is defined as T → T ′ = cT , Jα(t) → J ′α(t) = c−1Jα(c

−1t), implying that ρ(t) → ρ(t′) =
ρ(c−1t).

Under this mapping, the claim is that ρ′λ(T
′) = ρcλ(T ) if L is independent of the evolution of the

system and time. If true, then the rescaled reduced density matrix E′K(λ) → EK(cλ) will provide
our observables with different noise values, which is what we need for our observable.

The above claim can be proved by considering the original master equation, substituting in the
rescaling, and simplifying the expression. I will do it in class and it is in the SI of the Temme paper.
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3 Protocol
The method for the scheme now becomes:

1. For j = 0...n, choose cj > 1, taking c0 = 1 as the increased noise parameter compared to the
usual computation. Evolve ρ0 with Kj(t) =

∑
α J

j
α(t)Pα, where J

j
α is the rescaled J term and

the final time is Tj = cjT . Thus each gate applied in to the qubits is progressively stretched
in time.

2. Estimate 〈A〉 to get E′K(cjλ).

3. Solve the equations for γ and obtain E′n
K (λ) as an improved estimator for E∗.

This scheme was originally proposed [3] and later implemented [7] in superconducting qubits. For
the hardware implementation, the length of the microwave pulses implementing the gates were sys-
tematically increased, taking consideration of pulse length, rise/fall time, and buffer times between
pulses. The IBM device uses fixed frequency transmon qubits with coplanar waveguide resonators,
frequencies around 5 GHz, with dispersive readout. T1 and T2 were around 40-70 µs and the readout
error was < 0.05 for a 2 µs integration time. The shortest duration of the microwave pulse was 83.3
ns with a buffer of 6.7 ns which was stretched by cj > 1.
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