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Microwave Noise in Semiconductor Devices

Module 5

Austin J. Minnich, California Institute of Technology

Spring Term 2020

1 Markovian processes and Langevin dynamics

So far we have considered noise sources in equilibrium (Johnson thermal noise) and non-

equilibrium but in the absence of scattering (shot noise).

However, in a real device electrons are heated by a field and undergo scattering. As mentioned

in the last module, this noise source corresponds to a physical temperature of thousands of

K and hence is quite important.

In this module we want to build up the mathematical description of fluctuations in non-

equilibrium gases (taking non-interacting electrons in a solid as our gas of interest).

To do that we have to go back over a few mathematical topics in more detail.

2 More on random and Markovian processes

[Kogan Chap 1]

2.1 Correlation functions and conditional probability

First let us revisit the correlation function and include some additional elements of proba-

bility theory.

Take as a random variable with mean value . The fluctuation, is

also random.

The correlation function is a non-random characteristic of the kinetics of the random fluc-

tuations. It is a useful way to understand how fluctuations evolve on average.

As we discussed before, the correlation function is defined as the ensemble average of the
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fluctuation of system at two time instants, :

 x(t1, t2) ⌘ h�x(t1)�x(t2)i = hx(t1)x(t2)i � hx(t1)i hx(t2)i = lim
N!1

1

N

NX

i=1

�xi(t1)�xi(t2) (1)

For a stationary system this correlation function depends only on .

Assuming an ergodic system, we can also express the ensemble average as a time average as:

 x(t1 � t2) ⌘ �x(t1)�x(t2) = lim
tm!1

1

tm

Z tm/2

�tm/2

dt�x(t1 + t)�x(t2 + t) (2)

At the correlation function is the variance ( ).

As the correlation function goes to . To understand that, consider a

fluctuation in the system of the ensemble at instant , call it

. For but with close to , the fluctuation of each

system in ensemble has no time to change its value substantially, so likely has

the same sign as . Therefore for most systems in

ensemble. As increases, more systems have sign of opposite to

. At large enough , positive and negative fluctuations are equally probably

and hence .

Now some new ideas. Previously we discussed density and distribution functions.

Recall that the distribution function is

or the probability that the random quantity at instant is less

than .
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We can generalize them to multiple dimensions as follows:

W2(x1, t1; x2, t2) = P (x(t1)  x1; x(t2)  x2) (3)

Wn(x1, t1; ...; xn, tn) = P (x(t1)  x1; ...; x(tn)  xn) (4)

, for instance, is the probability that random quantity at instant is less

than and at instant is less than .

As before, we can introduce single and multivariable density functions:

w1(x1, t1) =
@W1(x1, t1)

@x1
(5)

w2(x1, t1; x2, t2) =
@2W2(x1, t1; x2, t2)

@x1@x2
(6)

and so on.

As an example, the 2D probability density function

w2(x1, t1; x2, t2)dx1dx2 = P (x1  x(t1)  x1 + dx1; x2  x(t2)  x2 + dx2) (7)

gives the probability of random var at instant to have a value

between , and also at instant to have value between .

The probability density functions have to be self-consistent in that lower order functions (

) can be obtained from higher order ones ( ) by integrating out extra variables

wk(x1, t1; ...; xk, tk) =

Z
dxk+1dxnwn(x1, t1; ...; xn, tn) (8)

Recall that random processes are stationary if all distributions are invariant under a shift of

all time points . That implies that does not depend on ,

depends only on , and so on.
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Using the density functions we define mean as usual:

hx(t)i =
Z

xw1(x, t)dx (9)

The order central moment is the average value of the fluctuation

h(�x(t))ri =
Z

(�x)rw1(x, t)dx (10)

We can also compute correlation functions:

h�x(t1)...�x(tni =
Z

dx1...dxn�x1...�xnwn(x1, t1; ...; xn, tn) (11)

Therefore, we have a new way to think to think about correlation functions in terms of the

density functions. This point of view is closely related to the ensemble average rather than

time average.

With this definition, we can use elements of probability theory to get more insight. Let’s

define the two-time correlation function as:

 x(t1, t2) =

Z
dx1dx2�x1�x2w2(x1, t1; x2, t2) (12)

You may recall Bayes theorem, which relates joint and conditional probabilities. Applying

it here, we see that

w2(x1, t1; x2, t2) = w1(x1, t1)P (x2, t2|x1, t1) (13)

We have defined , the 1D density function of at instant , and the con-

ditional probability , which is the probability for random variable at

time to have a value in the interval , given that in a

previous instant its value was .
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Some helpful notation:

h�x(t2)|�x(t1)i =
Z

dx2�x2P (x2, t2|x1, t1) (14)

which is a conditional mean: it is the mean value of fluctuation at instant

with the condition that at a previous instant the value was .

Using this for the correlation function, we have

 x(t1, t2) =

Z
dx1�x1w1(x1, t1) h�x(t2)|�x(t1)i (15)

Here describes the average evolution of the fluctuation with an initial

value of at time .

Note that the absolute value of a fluctuation for a given starting value can increase or

decrease with time. On average it usually decreases following our intuition that fluctuations

are damped in stable systems.

We can now think of the correlation function as the value aver-

aged over initial values .

Let’s get some intuition for how the conditional probability behaves.

Consider a subset of the ensemble for which fluctuations at instant are close to

. As time evolves, the fluctuations of these systems will become randomized, different from

each other, and have a distribution the same as that of the ensemble.

But, the mean value of fluctuation of the ensemble is . So the conditional

average value of the fluctuation tends to :

lim
(t2�t1)!1

h�x(t2)|�x(t1)i = 0 (16)

Another case: consider a Gaussian random process and its conditional mean fluctuation

and its correlation function.
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Recall that for a 2D Gaussian process we have

w2(x1, x2) =
1

2⇡�1�2
p

1� ⇢212
exp


� 1

2(1� ⇢212)


(�x1)2

�2
1

+
(�x2)2

�2
2

� 2⇢12
�x1

�1

�x2

�2

��
(17)

where �2
i = h(�xi)2i and ⇢12 = h�x1�x2i /�1�2. Using this formula for the conditional

probability

P (�x2, t2; �x1, t1) =
w2

w1
(18)

and integrating out , we get

h�x(t)|�x0, t = 0i
�x0

=
 x(t)

h(�x)2i (19)

Therefore for a Gaussian process, the time-dependence of the conditional mean fluctuation

is the same as for the correlation function for any initial fluctuation .

Example: if is monotonically decreasing with , the fluctuation

at on average decreases at any (arbitrarily small) .

[Remember this behavior occurs on average, not for instantaneous values.]

We can define a correlation matrix between several random quantities:

 ↵�(t1, t2) = h�x↵(t1)�x�(t2)i (20)

If we have an autocorrelation, otherwise we have cross-correlation.

Until now we have considered classical processes. In quantum mechanics observable quanti-

ties are represented as operators, and the observable must be Hermitian (since the observable

is a real, physical measurable quantity). However, our definition of correlation function is

not Hermitian!
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To solve that problem, define the observable for the correlation function as

1

2
{x̂(t1), x̂(t2)} ⌘ 1

2
(x̂(t1)x̂(t2) + x̂(t2)x̂(t1)) (21)

Now in classical systems we compute an average. In quantum systems we need to take an

expectation value over the density matrix of the quantum mechanical system.

The expression for the correlation function is then

 x(t1, t2) =
1

2
Tr(⇢{x̂(t1), x̂(t2)}) ⌘

1

2
h{x̂(t1), x̂(t2)}i (22)

By definition, it is symmetric with respect to .

For stationary systems, must therefore be even.

 (t1, t2) =  (t2, t1) !  (t1 � t2) =  (t2 � t1) (23)

For many random variables, we have a correlation matrix

 ↵�(t1, t2) =
1

2
h{x̂↵(t1), x̂�(t2)}i (24)

The matrix elements satisfy

 ↵�(t1, t2) =  �↵(t2, t1) (25)

and for a stationary system,

 ↵�(t1 � t2) =  �↵(t2 � t1) (26)

There are further relationships between these matrix elements due to time reversal symmetry.

The equations of motion of classical or quantum particles are symmetric if t ! �t and

Spring 2020

symmetrized

on n



MCE 201, APh 250/Minnich Module 5 Page 8 of 23

~B ! � ~B. That means

 ↵�(t1 � t2; ~B) = ± ↵�(t2 � t1;� ~B) (27)

The + sign occurs if x↵(t) and x�(t) are both invariant or both change their sign under time

reversal.

Example: velocity changes sign under time inversion.

The � sign occurs if only one quantity changes sign.

If ~B = 0 , we see  ↵� must be a strictly even or odd function of t1 � t2.

We get more properties ( ~B = 0 ) at short times t1 � t2 ⌘ t.

For a + sign, we have

 ↵�(t) =  ↵�(�t) (28)

 ↵�(0) +  ̇↵�|0 =  ↵�(0)�  ̇↵�|0 (29)

so that  ̇↵�|0 = 0.

For a � sign, we have

lim
t!0

[ ↵�(t) = � ↵�(�t)] (30)

so that  ↵�(0) = 0.

As we have done before, we can take a Fourier transform of the correlation function of a

stationary system:

 ↵�(!) =

Z 1

�1
d(t1 � t2)e

j!(t1�t2) ↵�(t1 � t2) (31)

We previously derived that  ↵�(!) =  ⇤
↵�(�!) since correlation functions are real.

We also have:

 ↵�(!) =  �↵(�!) =  ⇤
�↵(!) (32)

 ↵�(!, ~B) = ± ↵�(�!,� ~B) = ± ⇤
↵�(!,� ~B) (33)

Spring 2020



MCE 201, APh 250/Minnich Module 5 Page 9 of 23

So we see  ↵�(!) is a Hermitian matrix.

The second equation means that if ~B = 0 then  ↵�(!) are purely real or purely imaginary.

2.2 Spectral density of noise

Let’s revisit the spectral density of noise in this new notation. The general setup is as follows.

We have a source of time-dependent fluctuations �x(t) . They are passed through a bandpass

filter. We read the power of the filtered signal.

Taking the signal to be measured in a long time interval tm ! 1 , we represent the random

signal in a Fourier series:

�x(t) =

Z 1

�1

d!

2⇡
�x(!)e�j!t (34)

[Remember that this is a bit loose notation since �x(!) may not formally exist.]

Now �x(t) is real, so x(�!) = x⇤(�!). Then

�x(t) =

Z 1

0

d!

2⇡

⇥
�x(!)e�j!t + �x⇤(!)e+j!t

⇤
(35)

The filtered signal is

�x(t; f̄ ,�f) =

Z !̄+�!/2

!̄��!/2

d!

2⇡

⇥
�x(!)e�j!t + �x⇤(!)e+j!t

⇤
(36)

The signal squared = noise power. It depends on time and random fluctuates about the
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mean value [�x(t; f̄ ,�f)]2. Perform an ensemble average to get

h�x(t; f̄ ,�f)2i =
Z Z !̄+�!/2

!̄��!/2

d!0

2⇡

d!00

2⇡
h
h
�x(!0)e�j!0t + �x⇤(!0)e+j!0t

i h
�x(!00)e�j!00t + �x⇤(!00)e+j!00t

i
i

(37)

Now we need to figure out what the ensemble average is. Go back to our earlier discussion

of correlation function. Using the Fourier series representation we write

 x(t1 � t2) = h�x(t1)�x(t2)i =
Z Z 1

�1

d!0

2⇡

d!00

2⇡
h�x(!0)�x(!00)i e�j!0t1�j!00t2 (38)

We assumed a stationary random process, so  x can only depend on t1 � t2 . Therefore, the

ensemble average hi must be nonzero only for !0 + !00 = 0 . E.g.

hi / 2⇡�(!0 + !00) (39)

We get the coefficient by realizing the equation is now the inverse Fourier transform of the

correlation function  x(t1 � t2).

For that to happen we need

h�x(!0)�x(!00)i = 2⇡ x(!
0)�(!0 + !00) (40)

Putting it all together, we get

�x(t; f̄ ,�f)2 = 2

Z f̄+�f/2

f̄��f/2

df x(!) ⇡ Sx(f̄)�f (41)

We again find that the power transmitted through the filter is proportional to �f , and we

have defined the spectral density of noise per unit bandwidth, Sx(f̄). The definition per the

Wiener-Khintchine theorem is

Sx(f) = 2

Z 1

�1
d(t1 � t2)e

j!(t1�t2) x(t1 � t2) ⌘ 2 x(!) (42)
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We can also show that:

Sx(f) = 2 lim
tm!1

1

tm

�����

Z tm/2

�tm/2

dtej!t�x(t)

�����

2

(43)

If we have multiple fluctuating quantities we get a spectral density matrix. Say we have two

fluctuating quantities, �x↵(t) and �x�(t). Then

S↵�(f) = 2 lim
tm!1

1

tm

Z tm/2

�tm/2

dt1e
j!t1�x↵(t1)

Z tm/2

�tm/2

dt2e
j!t2�x↵(t2) = 2 ↵�(!) (44)

The spectral density matrix is just 2⇥ the the Fourier transform of the correlation matrix

and thus has the same properties we derived before.

Using various definitions of Fourier transforms, we find that the mean squared signal equals

the variance of fluctuations:

h(�x)2i =  x(t1 � t2) =

Z 1

0

dfSx(f) (45)

Another way to think about it is time-domain and frequency-domain relationships: the ACF

and spectral density are related by Fourier transforms. Therefore integrating the spectral

density over all frequencies yields the ACF at zero time which is just the variance of the

signal, and integrating the ACF over all time gives the spectral density at zero frequency.

3 Markov processes

Hopefully the above was a good review. Now let’s discuss some new concepts in probability.

To handle non-equilibrium noise we need to be able to describe random processing evolving

in time. The simplest type of process to analyze is a Markov process.

A Markov process is defined as one in which the probability of a process occurring at a given

time instant depends only on the state of the system at that instant.

Here is some intuition for why that is often a good approximation.
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Example 1: consider temperature fluctuations in a macroscopic body that exchanges heat

with a reservoir. A fluctuation in temperature involves changes in a large number of micro-

scopic parameters (since temperature is defined as occupation over all energy states). On

the timescale of a measurement, vast numbers of microscopic processes occur to adjust to en-

ergy fluctuations that define temperature. Given the large number of microscopic processes

that occur between each measurement, it seems reasonable to assume that the system loses

memory of any other information on its states prior to the current state.

More precisely, the conditional probability of the temperature fluctuation being at

time instant , if at the preceding measurement at it was , depends only

on this measurement and not any other previous ones.

Example 2: Mobile impurities in solids move by hopping over an energy barrier. The rate

of hop attempts, , is often much larger than the actual hop rate. After hopping, the

impurity attempts to hop many times again, in the process equilibrating with the state of

its present location. It is again reasonable to assume that in this process it loses memory of

how it ended up at its current site.

Now let’s put some math in. Say we have measured a random signal at several

instants, . Take the time intervals to be many times greater

than the characteristic microscopic time.

We discussed that the random process can be characterized by a density func-

tion:

Which gives the probability that has value in at time ,

value at time , and so on.

Use of Bayes theorem tells us that
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Here is the conditional probability that is in given that

at preceding instants it took the values .

So in general, the conditional probability depends on the entire previous tra-

jectory.

Now let’s use the Markovian assumption: the conditional probability only depends on the

value at instant that precedes :

In short, we take the system to possess no long-term memory. The conditional probability

function is called transition probability.

A homogeneous Markov process depends only on . It may not necessarily be

stationary, but all stationary processes are homogeneous. We will only consider stationary

processes.

This definition can be extended to random quantities by collecting them in a

vector and making the transition probability a matrix .

The transition probability must satisfy a very restrictive condition. Say is any inter-

mediate time between , so that .

The probability of is a sum of transitions through all intermediate :

This condition is called the Smoluchowski equation. It is very restrictive and helps constrain

the possible transition probability functions that are physical.

Other conditions.

The probability to transition to all other states is unity:
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If is the stationary density function, when we average the transition probability

over all initial values with density function , we must get

If is small compared with the characteristic time, has no time

to deviate from its initial value. Therefore,

If is much longer than the relaxation time, the system loses memory of its

initial condition and the transition probability is just the density at :

Because of this property, we often use (little) defined as:

It goes to zero as . The relations for this function are:
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The Smoluchowski equation remains unchanged.

From this equation, we can also derive a differential equation that governs the kinetics of

transition probabilities. They are referred to as the Kolmogorov equations.

Write the equation for maximum time and intermediate time :

Considering the properties we just derived, we can write:

Put this into the Smoluchowski equation:

Observe a finite difference for time derivative and take :

This is the Kolmogorov equation.

The quantities are the derivatives of wrt first time argument.

If , we can loosely interpret it as the probability of transition per unit time

from to .
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From the properties of P (x, t|x0, t0), we have

Z
dx�(x, x0) = 0 (46)

Z
dx0�(x, x0)w(x0) = 0 (47)

We now want to derive equations for the kinetics of the correlation function of fluctuations,

 ↵�(t1 � t2) which is defined as  ↵� = h�x↵(t1)�x�(t2)i. They should depend on the  ↵�(0),

or the variances.

To start, we need to define how a small perturbation at some time instant relaxes. Say at

instant t0, x(t0) = x0. The conditional mean value of x↵ at instant t > t0 is

hx↵(t)|x0, t0i =
Z

dxx↵P (x, t|x0, t0) (48)

Recalling that hx↵i =
R
dxx↵P (x, t|x0, t0) , we can write the mean deviation of x↵ from its

mean value as

h�x↵(t)|x0, t0)i =
Z

dx�x↵P (x, t|x0, t0) =

Z
dxx↵p(x, t|x0, t0) (49)

From the Kolmogorov equation, the time derivative of lhs yields

d

dt
h�x↵(t)|x0, t0)i = �

Z
dx

Z
dx0�x↵�(x, x

0)p(x0, t|x0, t0) (50)

Taking the deviations �x0 from mean hx0i as small, we write the integral term as

Z
dx�x↵�(x, x

0) = ⇤↵��x0
� (51)

Now ⇤↵� is a matrix with eigenvalues that give the inverse relaxation times of the system.
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[Summation over repeated indices implied]. We therefore find

d

dt
h�x↵(t)|x0, t0)i = �⇤↵� h�x�(t)|x0, t0)i (52)

With this equation for the conditional value of the fluctuation, we can find the equation for

the correlation function. Rewrite  ↵�(t1 � t2) into ‘one-sided’ parts:

 ↵�(t1 � t2) =  +
↵�(t1 � t2) +  �

↵�(t1 � t2) (53)

 +
↵�(t1 � t2) = ⇥(t1 � t2) h�x↵(t1)�x�(t2)i (54)

 �
↵�(t1 � t2) = ⇥(t2 � t1) h�x�(t2)�x↵(t1)i (55)

From the previous definition of correlation function in terms of condition probabilities:

 +
↵�(t) = ⇥(t)

Z
dxdx0x↵P (x, t|x0, 0)x0

�w(x
0) (56)

= ⇥(t)

Z
dxdx0�x↵p(x, t|x0, 0)�x0

�w(x
0) (57)

= ⇥(t)

Z
dx0 h�x↵(t)|x0, 0i �x0

�w(x
0) (58)

and  �
↵�(t) =  +

�↵(|t|).

Now take a time derivative (taking t = t1 � t2 ).

First, derivative of step function is delta function, and the coefficient is  ↵�(0).

Second, the derivative of p(x1, t1|x2, t2) is given by Kolmogorov equation.

Third, we use the approximation with the ⇤↵� matrix.

Then we get
@ +

↵�

@t
+ ⇤↵� 

+
�� =  ↵�(0)�(t) (59)

Assume that we can diagonalize ⇤↵�. We can then solve this equation.

Call �m the eigenvalues and �(m)
↵ the eigenvectors of ⇤↵� , of size M . Call �(m)

↵ the eigenvector
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of the conjugate matrix ⇤†
↵� giving eigenvalue �⇤m. By definition,

⇤↵��
(m)
� = �m�

(m)
↵ (60)

⇤†
↵��

(m)
� = �⇤m�

(m)
↵ (61)

Assume all eigenvalues are different. Normalized eigenfunctions are orthonormal:

X

↵

�(m)
↵ �(n)⇤

↵ = �nm (62)

With these eigenvectors, we find that linear combinations of �x↵ (weights given by values in

eigenvectors) have a single exponential time constant ��1
m :

�+
mn(t) =

X

↵�

�(m)⇤
↵  +

↵�(t)�
(m)
� (63)

Transforming to the eigenbasis, we get

@�+
mn

@t
+ �m�

+
mn = �+

mn(0)�(t) (64)

with the standard solution

�+
mn(t) = ⇥(t)�+

mn(0)e
��mt (65)

Therefore the original correlation function in terms of the eigenfunctions is:

 +
↵�(t) = ⇥(t)

X

m�

e��mt�(m)
↵ �(m)⇤

�  ↵�(0) (66)

The matrix of spectral densities is obtained by Fourier transform:

S↵�(f) = 2
X

m�

"
�(m)
↵  ��(0)�

(m)⇤
�

�m � j!
+
�(m)
�  �↵(0)�

(m)⇤
�

�m + j!

#
(67)
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Now consider that a single relaxation time exists only. Then we get a simple Lorentzian for

the spectral density of noise:

That is why so many physical processes have a Lorentzian spectral density.

One discrepancy to discuss: note that the correlation function is generally a sum of exponen-

tials that depend on . The time derivatives on either side of are

clearly different and not equal to zero. That contradicts a property we derived before.

The resolution is that for Markovian processes we are implicitly assuming that the time

interval in a Markov process is much bigger than the characteristic microscopic time. There-

fore, the derived correlation functions do not apply for too small a time. Here is a plot that

illustrates that point:

Figure 1: Markovian assumption.

4 Langevin approach

Here is another way to analyze random processes, originally described by Langevin in 1908.

In the Markov approach, we got equations whose solutions were definite (not random) cor-

relation functions or transition probabilities that characterize the random process.
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In the Langevin approach, we solve for the actual random variables or fluctuations, then

compute correlation functions by averaging in an appropriate way, e.g.

4.1 Brownian motion

We start by considering a “low-pass filtered” version of a Brownian particle’s trajectory. More

precisely, take as the correlation time of random forces acting on the particle,

and as the relaxation time of the velocity. Generally, .

So, we smooth over time intervals , subject to .

[In the frequency domain, we apply a low-pass filter with a frequency cutoff corresponding

to ].

We can now derive the equations of motion for the smoothed velocity. In time

interval , the particle undergoes many impacts, leading to a macroscopic force.

Handwavingly, we write this damping force as

Intuitively, this form arises because molecules with opposing velocity compared to the particle

impart a larger force than those traveling in the same direction, hence the particle should

get damped by collisions.

However, there is another, random component to the force that exists even if .

It has a large bandwidth (rapid variation in time), and occurs over timescale .

Call the random force divided by M . The correlation function of is

nonzero only in an interval of width . On the much longer timescale ,

it is a delta function. Therefore, we write the correlation function as:

Spring 2020



MCE 201, APh 250/Minnich Module 5 Page 21 of 23

where is the spectral density at zero frequency.

With these considerations, we have the equation of motion of the Brownian particle

The RHS is a Langevin source, and it represents a source term. Since this equation is a

first-order ODE, we solve it with Fourier transforms:

The spectral density of a random variable is proportional to .

So,

So the spectral density of velocity fluctuations is given in terms of the spectral density of

the source, which is independent of frequency in the band of interest, .

We can get the constant for equilibrium systems using the equipartition theorem. The

variance of fluctuations is

From equipartition, we know
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We also have

So we find

which is the standard result for the spectral density of velocity fluctuations.

4.2 Thermal noise of an LR circuit

[van der Ziel Chap 2]

Consider an ideal LR circuit driven by .

We can solve this equation just as we did for the Brownian particle using Fourier transforms.

We get

We have specified to be white, hence . Therefore,
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We now want to find the PSD of the source . For that we use equipartition.

First compute the mean square of current fluctuations:

The energy contained in each mode, by equipartition, is then:

Therefore we again get:

In the HW you will try getting the spectral density of telegraph noise using the Langevin

method.
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