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Lecture 2: Efficient quantum simulations
Reading: Universal quantum simulators, S. Lloyd, Science (1996).

1 Efficiency of quantum simulation

Let’s begin with a discussion of the goal of our application of a QC for quantum simulation. For this
application to be useful, we need to be able to implement the simulation efficiently, meaning that to
simulate a given Hamiltonian we should need only a polynomial number of gates as a function of the
simulation time. If we need exponentially many gates to perform the time evolution, the ability to
store the system state in an exponentially growing Hilbert space would not be very helpful because
we wouldn’t be able to apply operators to the state!

Consider the most straightforward transient simulation with a time-independent Hamiltonian.
In that case, the wavefunction at time ¢ is related to the initial wavefunction at ¢ = 0 by a propagator
U(t) as:

[0(t)) = U(t) [(t = 0) = e [u(t = 0)) (1.1)

Consider for now that the gate set we have available consists of single qubit rotations and a
two-qubit entangling gate of some type (e.g. CNOT, CZ,...it turns out that nearly any two-qubit
gate along with single qubit gates form a universal set [I, 2]). Any unitary can be decomposed
into d(d — 1)/2 two-qubit operations, where d is the dimension of the Hilbert space acted on by the
unitary (N&C pl89). Here we see a problem: as we know, the dimension d grows exponentially
with the number of particles or quantum degrees of freedom in the system, with the result that the
gate depth required to implement the propagator exactly grows exponentially.

So it is clear that exactly simulating a given Hamiltonian is in general not possible. How-
ever, Lloyd described how we can obtain an efficient simulation by relaxing the requirement for
exact simulation and by employing knowledge of the physical nature of most Hamiltonians we care
about. In other words, a quantum system can be programmed to simulate the behavior of arbitrary
quantum systems for which dynamics are determined by local interactions. The programming is
accomplished by inducing interactions between variables of the simulator that imitate interactions
with the variables of the actual system. Further, the simulator can perform this imitation to any
desired accuracy using polynomial resources and in linear time with the real time of the system.

Let’s make this discussion more precise by recalling the definition of simulation from the last
lecture. In Lloyd’s definition, a simulation is where one system is made to mimic another by
appropriately adjusting variables. Quantum systems can be controlled by external laser pulses,
magnetic fields, and so on. An experimenter can turn on and off Hamiltonian terms governing
interactions between quantum degrees of freedom with these controls, exactly as occurs in e.g. cold
atom experiments with light pulses.

Therefore, with this control we can create any unitary operator as U = exp(—iAt) where A is
a Hermitian operator. We string these operations together to get the overall unitary we want by
multiplying individual unitaries and using the Baker-Campbell-Hausdorff (BCH) formula:

eXeY — eX+Y+[X,Y]/2+..A (12)

where [.,.] denotes the commutator. As discussed above, the number of terms in the product
required to produce an arbitrary unitary operator exactly is O(d?). Therefore, if we let different
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quantum variables interact to make a logic gate, we can construct arbitrary unitary transforms of
a 2V dimensional Hilbert space, but not efficiently. This decomposition is therefore not useful.

However, physical systems that we care about in physics are not arbitrary but have a very
important constraint: locality. Locality is a strict required of relativity, but in non-relativistic
settings there is also an important constraint known as the Lieb-Robinson bound, which loosely
states that information in local quantum spin systems propagates with a finite group velocity [3].
Therefore, all physical systems of which I am aware cannot contain arbitrary interactions but rather
must consist of local terms. More precisely, a k-local Hamiltonian consists of:

H=> H, (1.3)

where each H; acts on a space of dimension m; with at most k variables (for example, in a
quantum spin system at most k sites). Any Hamiltonian with local interactions can be represented
in this way. Now for any Hamiltonian that is a sum of terms, we can approximate the BCH expansion
by retaining only the first order terms as:

et w (it Mty N1 H;, Hyt? /2n (1.4)
1>]

Therefore, we can approximate the actual unitary evolution by repeatedly applying the individ-
ual unitaries above to any desired accuracy by making n large enough. This expansion is known as
Trotterization and is accurate to O(At?). Higher order expansions are also known that have better
error scalings [1].

The final consideration is how many terms compose the Hamiltonian, for if this number diverges
exponentially we still have a problem. Here is where we use the locality constraint that enforces that
all physical Hamiltonians must operate only locally within a certain neighborhood. In practice, many
relevant Hamiltonians operator only over nearest-neighbor sites - consider the generic Heisenberg
and Ising spin models. As an example, consider a Hamiltonian that operates over only two sites.
There can be at most (g] ) terms, where N is the number of particles (or quantum degrees of freedom
but for simplicity we just say particles). This number grows polynomially with N and so we have
an efficient simulation that can be carried out on a quantum computer. Therefore, we can generally
say that local Hamiltonians, which comprise essentially all physically relevant Hamiltonians, can
indeed be simulated to within arbitrary accuracy using a quantum computer.

In a bit more detail, say that each H; operates on a Hilbert space of dimension m; (e.g. 2 for a
spin-1/2 system). Therefore the number of operations required for this term is O(m?). Each local
operator is simulated n times, and so the total number of operations required for U is

l
Nops ~ an? < nlm? (1.5)
i=1

where m is the maximum of the m;. To obtain an overall error < ¢, the error for an elementary
operation must be < €/nlm?.

Now, a simulation is efficient if simulating a system with IV variables takes time that is polyno-
mial in N. Therefore, as long as [ = [(N) is polynomial in N, the simulation is indeed efficient. For
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local Hamiltonians, that requirement is indeed met! For instance, for nearest-neighbor interactions,
I~ N.

Let’s examine the simulation time required in more detail. The error in the Trotter approxima-
tion for the entire unitary evolution of time ¢ is O(t?/n) as from the BCH formula. To get O(e)
error, we need n ~ t2 /¢ steps. However, each coherent operation that is actually implemented on
the QC is implemented in real time and therefore takes time ~ ¢/n. Therefore, the total time for
the overall simulation is simply the number of steps times the time per step, or n X t/n ~ t, or
linear!

In practice, we often can do better than the worst-case scaling described above. For instance,
for 2-local nearest-neighbor terms H;, terms that are more than one site away do commute and so
the decomposition in Eq. 1.4 is exact. Further, gates that do not share common sites can be applied
simultaneously, leading to parallelization such that the number of terms depend only on the locality
of the interaction, not the number of particles N! In that case, the time required to simulate the
system does not depend on NN, while the classical cost is still exponential in N.

As an example, a 2-local nearest-neighbor Hamiltonian can be divided as H = Heyen + Hoga
where even and odd denote gates over sites starting with an even or odd number, respectively, and all
the gates with the even or odd sum commute and can be applied simultaneously. In that case, each
Trotter step takes only two levels of gates to even and odd sites, and the two level decomposition
does not depend on the number of particles.

The conclusion is that quantum computers can indeed efficiently simulate physical quantum
systems - not all systems, but for all physical systems that respect locality of interactions.
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