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[credit for course materials: Prof. Jan von Delft]

PEPS Introduction, contraction methods

1. Motivation & Definition of PEPS

)[ 0 o
x — p
Goal: generalize MPS ideas to 2 dimensions! ”

,gﬂ 0.2y (32) {

Most obvious idea: 2D-DMRG, using a ‘snake-MPS’:

[White1996] (2D Heisenberg, nn & nnn interactions) (Mg \
] ’(/ (’

[Stoudenmire2012] (brief review)

[He2016] (2D Kagome)

[Zheng2017] (recent high-end application: striped order in 2D Hubbard model]

2D-DMRG is one of the most powerful & accurate methods for studying 2D quantum

lattice models. Main limitation: not enough entanglement. Entanglement entropy

but according to area law, we need

Reason for insufficiency: entanglement between is encoded in a single bond.

Natural generalization: add more bonds between rows. This leads to PEPS ansatz

[Verstraete2004]
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Introduce 5-leg tensor for every site:

Sum over all virtual bonds linking neighboring sites:

physical basis:

contraction pattern:

Variationally minimize . # of variational parameters:
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Why the name ‘PEPS’? Verstraete & Cirac envisioned
generalization of AKLT construction:

Associate 4 ‘auxiliary particles’ with each site:

Construct entangled pairs along bonds:

Define projectors on each site: @x‘

Then

General remarks:  [Orus2014, Sec 5.2]

-PEPS are dense: any 2D state can be written as a PEPS, though possibly with

exponentially large D
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-2D area law is satisfied:

-PEPS can handle polynomially-decaying correlations (in contrast to 1D MPS)
-Exact contraction is #P hard -> contraction time
[#P hard = counting class for number of solutions to NP-complete problems

NP-complete = problems whose solution can be verified in polynomial time]

Why are exact contractions hard? Recall 1D situation:

Cheap contraction pattern: Expensive contraction
pattern:
(MR ==
# of open indices # of open indices
cost: cost:

Moreover, if canonical form is used,

then contraction costs are very small:
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In 2D, growth of # of open indices is unavoidable:

open indices:

[/

(3
\

-Contraction cost would be manageable if a ‘canonical form’ were available!
Only started to be explored recently.

-‘No exact canonical form exists’ [Orus2014, Sec 5.2] (but this claim might be
outdated..)

-Restrictions to canonical forms are possible and possibly useful. [Zaletel2019,

Hagshenas2019]

2. Example: RVB state

S

Resonating valence bond (RVB) states are of continued

interest for constructing spin liquids. [Anderson1987],

[Rokhsar1988] (high-Tc context)

Canonical example: spin-1/2 on square lattice

‘Dimer’ or ‘valence bond’:

[sign conventions for bonds are needed and important]
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RVB state: = (equal superposition of all possible dimer coverings of lattice)

(—— o ——
e

(3)

—

VB fluctuations lower energy due to Hamiltonian matrix elements connecting different

configurations.

RVB state has a PEPS representation

[Verstraete2004, 2006]

Defining properties of RVB state: (=— A[P— «({r —

-each vertex has precisely one dimer attached

to it, so it can be involved in one of four possible states.

g
-Introduce four auxiliary sites per physical site, 4 f ?
{

each in one of the states

-define ‘entangled pairs’ using adjacent auxiliary sites from nearest neighbors of given

site:
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-impose constraint: allow only one auxiliary spin-1/2 per physical site and identify it

with physical spin:

Projector on site

only nonzero elements of -tensor:

PEPS form for RVB state:

Advantages of PEPS description of RVB state

-Dimer basis is hard to work with since individual (ﬁ ( (0 > £0
components are not orthogonal:

Therefore explicit computations are easier in PEPS framework!
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-PEPS description can be extended to larger classes of states, e.g. including longer-
ranged bonds [Wang2013]

-‘Parent Hamiltonian’ (for which RVB state is exact ground state) can constructed
systematically, but it is complicated: 19-site interaction [Schuch2012], 12-site

interaction [Zhou2014].

PEPS Il: Contraction Techniques

PEPS contractions, needed for computing expectation values, are #P hard when
performed exactly -> impossible in practice. Various schemes for performing PEPS
contractions approximately have been and continue to be proposed (this is a question
at the cutting edge of current research). We describe two elementary schemes: the first

uses purely MPS methodology, the second uses 2D transfer matrices.

2. PEPS via finite-size MPS

Goal: reduce PEPS computations to familiar MPS computations (‘reuse code’)
[Verstraete2004] (proof of principle application: spin 1/2 Heisenberg model on 4x4
lattice)

[Murg2007] 2D hard-core bosons = 2D XY model in uniform field
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Strategy for PEPS ground state search:

(i) imaginary time evolution

(ii) truncate back to , via variational compression (one tensor at a time) of

Ve .
2 physical
= 5 bonds
— @)
<
) Nt
el

Computation of

can be performed by repeated application of
MPOs to MPS!

() Trotter time evolution [Murg2007, Sec IV]
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Apply one such factor to all corresponding bonds:

Following bad habit of PEPS literature, we mostly drop arrows in our diagrams below...

D
y D 4

a
4

Heo

D\
d

O

3. time evolve

either 4. reshape

or 4’. truncate
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Summary of steps:

1.

2.

4’

Reshape 5-leg tensors into 3-leg MPS form.

(suggested by A. Weichselbaum) SVD to project dim space onto

(making step 3 cheaper) - known as bond projection.

Time-evolve. This causes increase in dimension of central bond from

Reshape 3-leg MPS tensors back into 5-leg PEPS form. These define the time-
evolved PEPS. Its central bond dimension must still be decreased, using variational
compression in step (ii) below. [Comment: when reshaping a big space is
split into the direct product of 3 smaller spaces. This involves much freedom
which should be used to minimize entanglement. That is partially achieved as a
byproduct of the variational compression of (ii), but more direct strategies involving
‘disentanglers’ (to be discussed in a subsequent lecture), might lead to further
improvements]

To get a good starting point for (i), one may use SVD to truncate central bond from

(Note: performing only this truncation, without subsequently performing (ii), would yield

a suboptimal result, since this truncation includes no information about environment of

open legs. By contrast, such information is included during variational compression (ii),

hence the latter is essential.
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(i) Variational compression [Meng2007, Sec ]

To compute the overlaps in , we need objects like

Y
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where is a 4-leg tensor with bond dimension

View first and last rows of double-layer PEPS as MPS, and rows in-between as MPOs.

Each application of an MPO increases bond dimension:

L .
D variational
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Iteratively apply MPOs. In last step, apply | . to obtain I | I I

which looks like a contracted MPS.

For one can proceed similarly but with one missing from lower

(bra) layer, and correspondingly some open legs.
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In this manner, compute and , then solve
Sweep until convergence, the converged result yields . Then return to (i), with
next Trotter gate.

Results for ground state energy [Murg2007]

oo - i ; 0.23
""""" exadt evolution
07012 “ouewte [ Bond dimension was
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yielding further 0271\ o308
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FIG. 4. Energy as a function of time for the imaginary time
evolution of the system of hard-core bosons on a 11X 11 lattice.
The evolutions are performed sequentially with PEPS of virtual
dimension D=2, D=3, D=4, and D=5. The times at which D is
increased are indicated by vertical lines. For comparison, the energy
of the optimal Gutzwiller ansatz is included.

FIG. 3. Energy as a function of time for the imaginary time
evolution of the system of hard-core bosons on a 4 X 4 lattice. The
evolutions are performed sequentially with PEPS of virtual dimen-
sion D=2, D=3, D=4, and D=5. The times at which D is increased
are indicated by vertical lines. For comparison, the exact ground-
state energy. the exact imaginary time evolution, and the energy of
the optimal Gutzwiller ansatz are included.

Accuracy and numerical efficiency
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FIG. 9. Distance K between the time-evolved state and the state
with reduced virtual dimension. The virtual dimensions D=2,
D=3, and D=4 are included. The distance is plotted for the evolu-
tion of a Mott distribution with N=14, as explained in Fig. 8. From
the inset, the deviation of the particle number from the value 14 can

be gathered.
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Main bottleneck: # of multiplications , memory

-> 11x11 lattice with D=5 took 55 hours for 1 time step, required 2 GB of memory
[computations were performed on a workstation with 3.0GHZ Intel Xeon processor]
‘Going beyond D=5 is difficult at the moment’ (2007)

By now, is possible when exploiting non-Abelian symmetries.

2. Infinite-size PEPS (iPEPS)

[Jordan2008] 2D quantum Ising model

Goal: exploit translational invariance by

borrowing tools from iTEBD.

Strategy: represent entire lattice in terms of just two tensors,

double-layer PEPS system-environment time-evolved version variational compression



MCE 201, APh 250/Minnich Module 6 Page 15 of 19

Steps:

() Choose specific bond between two tensors, forming unit cell. Compute
environment, built from too, using transfer matrix tools and
iTEBD.

(i) Perform imaginary time evolution on specified bond between active sites,
(iii) Use variational compression, involving to compress

Then move on to next bond and iterate...

Overall structure

Exploit translational invariance:
Use two-site active unit cell,

for bipartite covering of lattice.

Then iPEPS depends on FIG. 1 (color online). Diagrammatic representations of (a) a
PEPS tensor Ay, , with one physical index s and four inner
indices u, d, [ and r; (b) local detail of the tensor network P for

coefficients an iPEPS. Copies of tensors A and B are connected through four
types of links; (¢) reduced tensor a of Eq. (2); and (d) local detail
Sing|e_|ayer iPEPS: of the tensor network &.

Double-layer iPEPS:

() Contract out environment for specified bond

@ e P!
@—@ v )0
=1 IR L]

Approximate the double-layer iPEPS, :

by an infinite strip,
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(either horizontally, vertically, or diagonally)
surrounding the active sites.
Approximate strip by ‘environment’,

encoded in six E-tensors.

Computation of strip using transfer matrix methods

Define transfer matrix, R, built from two infinite rows of
a, b:

Compute its dominant right eigenvector,

represents entire ‘upper half plane’ (above active sites).

In practice:

is computed using iTEBD methods, with instead of as evolution operator.

Similarly, compute dominant left eigenvector,

then S-6-O-—6-

represents lower

1]
@l
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half-plane.

Next, define transfer matrix S from the six tensors a, b, C, D, C’, D’:

Compute its dominant left eigenvector,

then represents left part of strip.

Similarly, compute its dominant right eigenvector,

then represents right part of strip.

Construction of E-tensors representing environment (e.g. for r-bond)

CI DI Cl DI Cl DI | C’ D'

Note: ‘open up’ those double-legs from double-layer tensors

a, b (and C, D, C’, D’ ,X, X’) which are connected with single-layer tensors A, B, A’, B’.
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Thus, environment (computed from )

is represented by

(i) Imaginary time evolution of active basis sites

Time-evolve, e.g. for r-bond

D P D D
2
A D d
4 D
d/lp jﬁj‘*‘
f 4/ o
d L

(iii) Compress via variational compression
Find new tensors (with bond dimension ), which maximize overlap with

time-evolved state.

variationally maximize overlap
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The updated A’, B’ define the new iPEPS. Move to next bond, iterate steps (i) to (iii)

until convergence.

How to deal with the environment at each time step?

-‘Full update’: recompute environment after each time step (most accurate, most
expensive)

-‘Fast full update’: use same environment for several time steps (less accurate, faster)
-‘Simple update’: don’t compute full environment, but approximate it using bond

tensors (least accurate, but often still reasonable, by far the fastest)

Results for transverse field Ising model [Jordan2008]
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FIG. 4 (color online). (a) Transverse magnetization m, and 0 : : r o <

energy per site ¢ as a function of the transverse magnetic field

s

FIG. 5 (color online). Magnetization m_(A) as a function of the
transverse magnetic field A. Dashed lines are a guide to the eye.
We have used the diagonal scheme for (D, y) = (2, 20), (3,25)

K. The continuous line shows series expansion results (to 26th
and 16th order in perturbation theory) for /# smaller and larger
than s, = 3.044 [13]. Increasing D leads to a lower energy per

ite ¢. For instance. at i = D =2) ~ — and e(D = . :
:”c‘ e. For m_':l"me' ath 2 1,e(D =2) . 1.6417 and ¢ (,1? and (4.35) [15] (the vertical or horizontal scheme leads to
3) = —1.6423. (b) Two-point correlator S_.(/) near the critical comparable results with slightly smaller y.) The inset shows a

point, A = 3.05. For nearest neighbors, the correlator quickly
converges as a function of D, whereas for long distances we
expect to see convergence for larger values of D.

log plot of m. versus |A — A.|, including our estimate of A, and
. The continuous line shows the linear fit.



	PEPS Introduction, contraction methods
	Motivation & Definition of PEPS
	2. Example: RVB state
	PEPS II: Contraction Techniques
	PEPS via finite-size MPS
	2. Infinite-size PEPS (iPEPS)

