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Microwave Noise in Semiconductor Devices
Module 6
Austin J. Minnich, California Institute of Technology

Spring Term 2020

1 Fluctuation-dissipation in equilibrium and non-equilibrium

[Kogan Chaps 2,3]

Our goal is to eventually be able to understand the microscopic origin of current noise in an
electron gas driven by an external field. Before we do that, we need to treat the equilibrium
situation more rigorously.

The fluctuation-dissipation theorem is a generalized version of the original Nyquist theorem.
It relates the spectral noise power to the dissipative part of the linear response of a system
to an external field. It was originally derived in its general form by Callen, Welton, Green,

Barasch, and Jackson in a series of papers in 1951-2.

1.1 Fluctuation-dissipation theorem

|Callen-Welton approach|

Consider a system in equilibrium with a thermal bath at temperature I . From stat

mech, the probability to find the system in state ™  with energy EM is the Gibbs
factor:
actor -Em/‘QT (F'EM)/LsT (F - ‘Ff

e e — ec Cmcj\i

Wm <
-LT [«l)

With these probabilities we can define a density matrix using the eigenstates of the Hamil-
4

tonian: o ‘U
4] = ekt b5 (G,
M ;T
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This density matrix is diagonal in this basis with eigenvalues wo\

We want to calculate the spectral density of fluctuations and the linear response of the

system to a perturbation. By comparing these results, we will see they are related.

Let’s tackle the spectral density of fluctuations for some quantity X (f) in an equilibrium

: : §

system. In quantum mechanics, an observable is an operator, so that X('H A KU) . Fur-
ACE.

ther, we want the correlation of this operator with itself at a different timé( This quan-

tity is measurable and so must be Hermitian. However, the classical correlation function

is not Hermitian. We fix this by defining the quantum correlation function as

L€y, )y = S (RN 4 Xh) X))

Now we can write:

S [5)= 3 S"“A(f( 4) 4 T(p 120 O LA

—00 o e /)xm:@n[m?

(
We write ynd(f) as the matrix element of the Heisenberg operator X '(_) be-
tween states \{,.. | YA . This operator follows the Heisenberg equation of motion (recall

the Heisenberg picture is the one in which the operators have time-dependence, not the
s Yoz WU, U= e .
% juutgu) ¢ UL, = (s ¥ X B0/
LA W = )—[H(\?(ﬂ}
Apply (M ml , W’n? to each side: k

Cal (M) 40) =é(£,,\ Xa, = EnYon)
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This equation has solution:
: JWan 'f
xﬁn(f‘ < Xﬂm (0) &
ot
o) = =\ &%t
Use the definition of delta function to get: w) -~ AT

Tr é— U*A' ‘ '1M7
I-= ?'“Mi‘lnl

tn

g(wnm+w)

(/S,T(o‘) ATV 2 Wi [ Xoal fg(wm )

[This step takes a few lines of derivation‘and will be a homework problem.|
We see that the spectral density of fluctuations of )(“‘) at frequency 'f‘ are determined

A
by the matrix elements of the QM operator ¥ between states with energies differing
by E - En =t h TF

Simplify a bit more by interchanging M and #)  in the second sum to get:
| §
C.(5) =T 2 (wat W) Kl § (evng - €)
X mn
Now remember that we know the weights for the equilibrium system as the Gibbs weights.

- h W
Wa - /T
Wm

In particular, we know

So the final expression for spectral density of fluctuations is:
<L £ A
"D G5 = am()+ ) 2 el 5 e

Now consider an apparently unrelated problem of the response of a system to an external per— fo"
/ e

turbation. Say our physical variable X interacts with an externally applied field F cne
s 7

If Y(’f) is the QM operator, the Hamiltonian interaction term can be written H =-F

L

-
Example: say Px is a component of a dipole moment f  and F is the electric
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field acting on the system. The Hamiltonian term is H’ < -I" E( . =¥
/’. The

Express F(f) as a Fourier series and examine its effect at angular frequency Gy

driving field F(f) is a real function so that:
i “Jet v Jut )
el = L(R Y +E ¢

This external field forces the system to undergo transitions between its eigenstates and
ultimately dissipate the energy. From basic perturbation theory in QM, we have Fermi’s

golden rule for the transition rate due to an external field:

oy WM = 3—;; |F,,|'L lYm’l[ S(“’:ﬁ ) +§(w::-5“),)

When a transition happens, an energy quantum h“ is either absorbed or emitted. The
‘J“""’U" "N/l ( A"‘.

average rate of power transfer is

4
S W Wy W)

mn Vﬁ:\‘vg) fichr

With this transition rate we can compute the power transferred to the system by averaging

(

over the initial Gibbs state:

v L
= -— _ .".(A] A _ .J\’f“/&«,T wm’xm" _w
7 Q= T e (- e ) S W loa | 5o )

T Ciths kb
This looks something like g«x (’f’) I Let’s figure out the prefactor.
Consider the most general expression for the linear response of X to an external
force F . PA Causelity
- t ( t (
(x) = (dtAG-+) FG4
~» Lre spenst

[We have seen this equation before.] Expanding £ (+) in a Fourier series again, we get

(x(¥) = s Alu) et 4 E‘/’r("w)éwf]
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( AR v
where Jw = - )
h Ale) = S dt " Al = A (-w
L e

is the frequency-dependent susceptibility of the system. The power absorbed by the system
( and dissipated over period )"W/ w is:

Q = (X)) E)

. ¢ jet
- L"i [‘Jw £ Ale) cwt+ o UA ()¢ ] g
| [5 c"\d + &7 cj‘j]

Only the terms lacking time dependence contribute to the average power."So
) O 3
"(l [F]” e (4 (W)’A[‘”))

B S I6("w A" (o)

« -
where A ( w) = ITm ( ﬁ-) is the imaginary part of the complex susceptibility.

Using this and the previous equation for power dissipation, we get:

G5 = 3k (14 ™) pv) = M coﬂ(.l%) AL
(' _ -H'/lc,‘r)

(NNr——
-
This is the fluctuation-dissipation relation. It links the spectral density of fluctuations to

the lossy part of the linear response of the system. To get it in its final form, we usually
write it in terms of a generalized conductance, defined as the response of ¥ to ‘:G') .

Considering the various definitions, we have:

6-((,»\: ~J0 A‘(u) , G =R G:w/l"
gi(ﬂ: W' .(x(*f)
S"(({ )\kf QPH“ ( ) [OJ) Spring 2020
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Finally, let’s apply it to an Ohmic conductor with impedance Z . In this case the

external field is a voltage, and the time-dependent response is a current. So we want the
: : . : - 9-l

spectral intensity of current fluctuations. Since (r =2 , we get:

G (5) = AhF cfh(RE M-;) &

YR}

-{
-1
Calling RC(Z ) -)‘ and taking the limit of L‘-( ‘c ksT, we get

F L 1 ~ : un ”A
6“( Mo b et M,l?c¢’ﬁ‘cvj

which is what we have gotten from the original Nyquist derivation. Note that the term

incorporating temperature and frequency depending can be written

ot o (BE) W (Als7) + 1)

where l
-
N = ——
hF
G
e ™ -
is the mean number of quanta of an oscillator with frequency f , temperature T

Some numbers: at T-‘*' k / ﬁ )‘ , for 5 ) "'06-”&

2T
2 Fluctuations in non-equilibrium gases
With the mathematical machinery in place, we now return to the original problem: under-
standing the noise observed in an electron gas with a field applied. Or, how drain noise can
have an equivalent noise temperature of >1000 K, much greater than the physical tempera-

ture?
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In equilibrium, obtaining the spectral noise power of a solid-state plasma (free electron gas
in a solid-state host) is easy - measure the resistance. FDR then gives the noise power, which
has a white spectrum for nearly all frequencies of interest.

For a non-equilibrium plasma driven by an external field, we lack a general relation between
spectral density and response properties. So we need to further develop the theory.

We will now figure out to do that calculation for a gas of hot electrons that are not equilibrium
with the phonon thermal bath of the conductor. We neglect pair collisions of electrons

(considering electron-phonon collisions to dominate).

2.1 Some history

e 1935 - Leontovich first investigated how to treat fluctuations around stationary, non-

equilibrium states, calculated correlations for monomolecular (one particle changes
state) and bimolecular (two particles simultaneously change state. In this case a cor-

relation arises between particles).
‘/' /S‘ ‘ ""LWV\-*'\ (',1 UIL+M

e 1953 - Wannier uses the BE to describe random motion of ions about a mean drift
—_———
distribution. He introduced a generalized Einstein relation that is true for systems

with a constant relaxation time but otherwise not valid.

e 1956 - Hashitsume gives a statistical theory of linear dissipative systems using Langevin

type analysis.

e 1957 - Kadomtzev describes BE with Langevin sources — Boltzmann Langevin equa-
——

tion.

e 1959 - Price reports early theory of hot electron noise, showing (1) spectral noise power

can be related to a differential diffusion coefficient, and (2) predicting anisotropy due
e

to ‘energy relaxation noise’ although he does not call it that. It is the second term in

Eq 19.
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° <196@- 66— Lax develops a theory of noise for monomolecular transitions in a series

of papers that treat fluctuations from a non-equilibrium steady state. His work treats

the same problem as Wannier with a more general mathematical treatment.

1962 - Erlbach & Gunn measure transverse noise temperature of hot electrons in Ge at

C -

420 MHz, observing an increase in 7T, with F field (presumably due to heating of the

gas). The expected anisotropy is not apparently observed although it is hard to tell.

1963 - Kogan analyzes electronic noise that is induced by temperature fluctuations of

the electron gas in a macroscopic approach, assuming that electrons possess a well-

defined temperature.

1963 - Gurevich uses a Boltzmann-kinetic type treatment to analyze current noise

in semiconductors. It is an early version of the “method of moments” in which a
Boltzmann-type equation is derived for the current autocorrelation function. There is
an error in this paper. Also in this year, Gurevich describes what is known as convective
noise, noting that it will exhibit a frequency dependence at f and anisotropy according

to E field axis.

1966 - Gurevich Katilius analyze electron transport in an anisotropic semiconductor.
The treatment closely follows the 1963 paper and corrects an error in that paper
(around eq 3.8, fixing eq 6 in earlier paper). This paper appears to correctly include

correlation owing to the fixed number of particles.

1967 - Kogan & Shulman: computation of noise spectrum of hot electrons with frequent
—_\

ee collisions from a macroscopic perspective (Sec 3.1 of book).

1967-8 - Bareikis, Matulioniene, Pozela report measurements of anisotropic noise tem-
w
perature in p-type Ge, T = 80 K, 9.6 GHz, confirming prediction of ‘convective’ noise

and anisotropy.
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1968 - Levinson & Matulis examine theoretically noise including inelastic scattering

from optical phonons. Equation for equal-time correlator.

1968 - Ruch and Kino: measurements of mobility, diffusion coefficient, etc in GaAs.
——

1969 - Bixon & Zwanzig - Described Boltzmann Langevin equation and showed how

to compute fluctuations of pressure and heat current.

1969 - Kogan & Shulman; Langevin approach to computing current noise power with

Green’s functions. Kogan’s work corresponds to Chap 3 of book. Gantsevich, Gurevich,
Katilius: rigorous derivation of “method of moments” approach to noise from quantum

statistical mechanics.

1969 - Sigmon & Gibbons, measurement of longitudinal high-field diffusion of electrons

and holes in silicon.
1970 - Fox & Uhlenbeck: Theory of hydrodynamical fluctuations.

1970 - Kogan & Shulman, Gantsevich, Gurevich, Katilius (1971, JETP): equivalence

of VariouMOmpute spectral density of nonequilibrium gas. Gantsevich,
Gurevich, Katilius (another paper) studies scattering of light by hot electrons using a

diagrammatic method; it now includes spatial inhomogeneity to the theory.

1970 - Shulman & Kogan: spatially inhomogeneous fluctuations in a non-equilibrium

gas.

1970 - Bartelink & Persky: measurement of transverse diffusion coefficient in Si at 300

K.

1971 - van Vliet: Markov approach for density fluctuations, showing effect of correlation
%

of non equilibrium gas with pair collisions.

1972 - Holm-Kennedy & Champlin: measured warm electron microwave dielectric con-

stant and resistivity in Si. Humps are observed, attributed to intervalley processes.
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1974 - Van Kampen: equation for fluctuations in a homogeneous dilute gas using only

assumptions of Boltzmann equation.

1975 - V. Barekeis, V. Viktoravichyus, A. Gal’dikas, and R. Milyushite: Measurements
—

of anisotropy of noise in n-type Ge at microwave frequencies.

1976 - Logan & Kac: describe evolution of homogeneous gas by a Markov process
obtaining Fokker-Planck type equations.
1978 - Price surveys numerical methods for hot electron noise.

—
1978 - Onuki: master equation to derive fluctuations about a mean distribution in
an inhomogeneous gas. Nonequilibrium correlations lead to non-exponential decay of

response.

1978 - V. Barekeis, V. Viktoravichyus, A. Gal’dikas, and R. Milyushite: Measurements

of electronic noise, diffusion coefficient, and small-signal conductivity in Si and Ge.

1978 - C.Canali &C.Jacoboni, F.Nava: Experimental observation of intervalley diffu-

sion in Ge at 77 and 190 K. Supported by Monte Carlo simulations.

1979 - Kirkpatrick, Cohen, Dorfman - theory of light scattering from a non-equilibrium
fluid.

1979 - Gantsevich, Gurevich, Katilius, extended review paper.

1979 - Jacoboni and Reggiani: Review of hot electron transport in cubic semiconduc-

tors.

1979 - Hill, Robson, Fawcett: Diffusion and the power spectral density of velocity

fluctuations for electrons in InP by Monte Carlo methods.

1979 - R. Barkauskas and R. Katilius: noise with strong ee interactions.
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e 1980 - V. Barekeis, V. Viktoravichyus, A. Gal’dikas, and R. Milyushite: 3-band model
of GaAs, experiment.

e 1981 - Bareikis et al: experimental measurements of hot hole noise in Ge at liquid He

temperatures.

e 1981 - Ernst & Cohen derive hierarchies of coupled equations from the master equation

that describe fluctuations.

e 1981 - Jacoboni et al: measurement of drift velocity and diffusivity in Ge vs tempera-

ture and field.

e 1982 - Kirkpatrick, Cohen, Dorfman: pedagogical overview of how to treat light scat-

tering from non equilibrium fluids.

e 1982 - Bareikis et al: experimental study of frequency dependence of noise in n-type

Si, and InSb (separate paper).
e 1984 - Tremblay: pedagogical overview of theoretical treatment of fluctuations.

e 1987.88 - Bareikis et al: experimental study of effect of source-drain distance on hot
electron noise; shorter lengths require higher fields to achieve the same magnitude of

noise observed in bulk.

e 1988 - Reggiani & Lugli, Mitin: generalization of Nyquist-Einstein relation for non

degenerate semiconductors.
e 1988 - Zimmerman and Yu: MC study of noise in 2DEG.

e 1989 - N.A. Zakhlenyuk, V.A. Kochelap,and V.V. Mitin: Theory of electronic noise

with optical phonon emission.

e 1989 - S. Dedulevich, Z. Kancleris, and A. Matulis: noise in weakly heated electron

gas.
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e 1992 - Bareikis, Katilius, Pozhela, Gantsevich, Gurevich - Fluctuation spectroscopy

book chapter.

e 1992 - L. Reggiani T. Kuhn L. Varani: MC simulations of various noise sources in
— L —

p-type Si at 77 K.
e 1993 - Bareikis et al: real-space transfer noise in 2DEG, experiments.
e 1994 - Nougier: pedagogical overview of noise sources in electronic devices.

e 1994 - Bareikis et al, description of experimental studies on hot electron noise in devices.

Effects of intervalley scattering and length dependence are extensively discussed.

e 1994 - Reggiani & Varani: extensive review and MC study of electronic noise in semi-

conductors.

e 1994 - Reggiani et al: study of hot phonon effect on electronic noise. Hot phonons
are found to increase the noise temperature compared to when equilibrium phonon

population is assumed.

e 1995 - Bareikis et al: estimate of Gamma-L intervalley scattering time in GaAs from

noise measurements. Value is order 30-50 fs.

e 1997 - Katilius et al: MC study of hot electron noise with ee collisions in GaAs at 80

K.

2.2 Basic concepts [Kogan chap 3]

Applying a voltage across a conductor creates a current but also heats electrons that dissipate

the energy to a bath, e.g. thermal lattice vibrations. Heated electrons do not emit the energy

instantaneously (e.g. th‘ere exists a resistance to energy transfer between electron and phonon
Ld—(? ndy

systems), and hence they equilibrate at some temperature above the lattice temperature.

Current is linear in voltage u , but heating is quadratic, \k
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Effects that occur at high field: Ohm'’s law deviations, from mobility decrease and eventually
C—)

negative differential resistance. Impact ionization generating electron-hole pairs,

Let’s define what we mean by ‘hot’ electrons. If no field is applied, electrons have an

e
equilibrium distribution, call it f ,( E) ( C’ = entr 9"1)

fo(E)

0 E

Fig. 3.1 Equilibrium energy distribution function (curve 1) and the energy distribu-
tion function of hot electrons (curve 2). E is the electron energy.

Figure 1:

When an electric field is applied, electrons are heated and come to an equilibrium with
0 e

occupancy at higher energy states. Therefore, 'f deviates from f 1 . In this situation,

we say that we have a ‘hot electron gas.’

We will see that hot electron properties depend not only on their mobility, which are deter-

mined by the momentum relaxation time Ty , but also on the energy relaxation i’,\’“lLL
time tO . These scattering mechanisms can arise from different sources. '3‘7;&
At low temperatures, elastic scattering is due to impurities. Scattering by acoustic phonons is
quasi-elastic. For a parabolic band, electrons with momentum t K can change momentum S. NZQ
by at most )-H‘ . The energy of phonons with that wave vector is Lk¢ K, where S is 5
ho < k€K v 18 P

sound speed. Therefore, the ratio
ﬂu:: - h W _ .._)‘M (2N 5 o ‘i‘ Le ’
d(,l/(‘m\ E (k) - h“k’)\ ‘h k’/m* V

wmt

where V is electron velocity. Since the Fermi velocity S5 sound velocity, momentum

[\ ~
can change substantially but energy changes very little. =¥ 1"‘ St~ C('U fic ..
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We also consider the various probabilities of phonon emission or absorption since that will
set the net balance of energy transferred between electron and phonon systems. Remember
that the probability of phonon emission is “* N 1 + l , absorption is N 1 . Here
the occupancy of phonons with wave vector % is /\l«, - (Ck wc,/lc?’_l )F]. The ratio

of the difference in absorption to emission processes to total is:

A - N.‘fl ’N‘l

A

.I_Dh] N1+l "'N" ‘)‘N1+'

This quantity gives an idea about the net amount of energy that can accumulate in the
electron system. If the ratio is small, then electrons can get rid of about as much energy as
they gain from the phonons. Taking k w1 L l‘ﬂ:for acoustic phonons, we see that

JAN ' L Kous

“ "‘_ \-\.—S—‘
Vv

T

LL'

That means emission and absorption are almost matched in this limit, and hence the effective
rate of energy loss to the phonon thermal bath is reduced compared to the rate of momentum

d
scattering. The reduction therefore scales as ( S, \/) LL,

_ /hm
When we consider impurity scattering, we have T [ (ot / so that the ratio is even

bigger: & lo 5 in n-InSb at 6 K. The result is that for this limit, momentum random-

ization leads to an isotropic momentum space distribution, even if electrons become hot.

Another useful limit: at low temperatures Tb and high electron densities n , the
electron-electron collision scattering rate, tn , is greater than energy scattering rate.
Then the distribution function of electrons can be approximated by an equilibrium Fermi

distribution with temperature 7' (electron temperature), which is = s , the lattice

temperature.
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We can get T by;m power balance: ( F - Cl CC+ v '[?t | AS/)
Gﬂ(Tx F =P (T)

LHS: Joule power per mass gained from field
RHS: Power lost to phonon bath

Considering a two-temperature model, we write

pr) = ALk (T-T,) iChade
T (1)

Therefore we find the electron temperature:

k@(T"TD) — TFLT"’ — 3

-

v Fk‘c,,(T)

Ce

NnCe
At sufficiently high fields, high crystal temperatures, electron energy can be comparable to
optical phonon energy. In that case, everything discussed above breaks down. We generally

need to numerically solve the Boltzmann equation.

2.3 Macroscopic model for hot electron noise in semiconductors

In general obtaining the spectral density for hot electron noise from a microscopic treatment
is challenging. We can get some physical insight from a macroscopic model in a simplifying

limit; namely high electron density and low temperature. In that case ee collisions are most

frequent and inelastic scattering is sufficiently small, so that + (é ) is close to an

To T,

equilibrium one with an electron temperature lattice temp.

=

“ -
In that case, for frequencies 'f cC L‘Cc < tl’ , we can use Langevin sources to

write down equations governing the fluctuations of macroscopic properties, current and tem-
perature.

. Wt
Current Langevin source, due to momentum scattering: ("’)

st
Energy Langevin source, due to inelastic scattering with phonon thermal bath: g S ( )
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For now, we present the relevant equations as originating phenomenologically. They can be

derived from a general theory, assuming ee collisions are frequent. We get

ST(H) = R U+ W (&'/aT) §T() + ST (N

— - ISUu + USI-V%STi- 8'54;"41['})

Here R(T) is resistance of sample, V volume, M electron density, (e electron
heat capacity per electron, I‘(T) the specific power dissipated by electrons into phonon

bath. N
a /R CW

We see from first equation that currfnt fluctuations are caused by voltage fluctuations as
c T

well as electron temperature fluctuations (if conductivity depends on electron temperature).

Take a Fourier transform, eliminate ST (+) from equations to get [HW to fill in details|

The small-signal impedance is

—
1+ jwtos(og/o +1)
N+ jwri(afog+1)

N~

Z(f) =

Small signal conductivity:

P+ o' F?
P/ _ 0-/F2 (2)

_(Fe

with F as electric field, L(, - I_‘p/("" energy relaxation time, (8 is DC con-

Pt = AT

oq=0(T)

ductivity. Prime denotes derivative wrt electron temperature.

Total Langevin current source:

st _ [ UWR™1/aT) _wwpyl 3

VP(1—-jwr) ¢ 1 — jwry
[ ‘)’ ['ad ‘3 +
So, current fluctuations = fluctuations of electron drift velocity, and electron temperature

fluctuations, are coupled in high ,Z’ fields if conductivity depends on electron temperature

F
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(as it usually does). If mean current is zero, they are decoupled.

Mechanism of coupling: fluctuation of current at nonzero voltage — fluctuation of Joule
power — fluctuation of electron temperature — fluctuation of conductivity — fluctuation of

current.

First predicted observable of this effect (Price 1965): dispersion in spectral density of cur-
: . o T . . . |

rent /voltage noise appears at frequencies T ¢ - in addition to the dispersion at tl )

This additional contribution of noise was termed ‘convective’ noise by Price; the contribution

associated with momentum relaxation was denoted ‘thermal’ noise.

We will now see that these noise contributions do not follow the symmetry of the crystal,
in the sense that noise perpendicular to and parallel to E field are different even in cubic

crystals.

< <
it T
First, we have to figure out the Langevin sources, S I ( S 7( )

-‘ \ -‘-
) LL ) ta
For frequencies + t' , current Langevin source S I has spectral

density Ll l(;T R !

+
Energy flux fluctuation is determined by fluctuations in rates of absorption g Tt«] and

emission 831 of phonons of wave vector 1 , frequency W1

¢35, (5) = z ko (557 () - 537 (%)

The assumption is the Markovian one that different scattering events are uncorrelated.

—

Therefore, correlation functions of Langevin flux are nonzero only if fluxes correspond to
e —

identical random events. They should also be proportional to mean fluxes as they are a

shot-type (Poissonian) process. So,

bith + i

o =\ (5T (1) §35 (6)) = S0 Sy, Ia
(§T4 ) 877, 1)) = 0
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: + -
Here 3.4 is the mean rate of absorption (upper), emission (lower) of phonons with wave

vector ‘1 . Then

‘ W : 55+ 37
¢ 57y @)y = i) z(h ) (3 +77)

with spectral density

oy S [8a) (347
ga‘c(’C)’}‘lE) 1 1)

Given the assumptions of model, e.g. high electron density — high impurity concentration,
and low temperatures, momentum relaxation is due to impurities, energy relaxation due to
phonons. Thus SI (ot ( Sjc}ﬂ1 are uncorrelated.
We then find that the spectral density of current fluctuations parallel to mean current (with
fixed voltage such that Su O ) is (after a bit of manipulation):
-\
b
(/)2 F? Sy

‘%Jl(f) = S";; + (1 + W) |:4kBT0'(T)(P’ —a’F2)276 n (% B 1)} siet)

—

(O

with inverse relaxation'time of electron temperature at constant voltage as:
)
.

\ / ! 172
P —JdF
. o= ———— (5)

- nc@

Using SI A S.) we then get the spectral den51ty of current density fluctuations parallel
St g

widd S5 = A S5 T 2 SL - YT L T A YT

A AR AL v

4kgTo(T
Sjn(f) = BV( ) o (6)
e CPF Sy [ (PP
VI \WkpTo(D) (P — o' F22 V " | (P — 02F2)2
For small % field, the component of noise % F is interpreted as resistance noise:

F
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the resistance fluctuates due to energy exchange between electrons and phonons and then

from coupling currentrcurrent and electron temperature fluctuations.
~—— s

To get the equation, linearize above result about F , then use that from Kirchoff’s law,
N
we know (D) S - SV = ’l‘ - l éj
g R I% 'ra“ Il
L YT _ YeTR - Sv
= 5 == LLT RTL _ R ¢~
> I R V v > LT
L SR _ S
1 R* T
Theref ite th ist i :
erefore, we can write the resistance noise as J e

Sr . LT
(;/) ‘;‘3+8k:BT<U(;I>

Now here is where the anisotropy comes in. Current fluctuations transverse to the mean

(7)

X - _
I 2 R V(I +w?2)

electric field don’t couple electron temperature since current fluctuations transverse to the
field don’t contribute to Joule power. Therefore, the spectral density perpendicular to field

is just the usual Nyquist noise:
S'.L(;) - el W(T) - u?ﬂ l gj" (3()
J w
V

At high frequencies WwTy ?? ‘ , the parallel and perp spectral densities coincide.

In the low frequency limit, they are different even in cubic crystals. The sign of the difference
S\

depends on the sign of d 6'/ QT =0, or the sign of the nonlinearity of current-voltage

characteristic.

}\.\gl\el

\
, , © Ifitissuperlinear, c SO0 , L current noise (parallel to field) is than

transverse (perp to field).

(
)\ , If it is sublincar, 0 < 0 , L current noise (parallel to field) i lb W& than
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transverse (perp to field).

int
Sji

int
g P

1
T

(2m7)=1 (2mmy)~1 f

Fig. 3.2 The spectra of current fluctuations at fixed voltage and different types of

deviations from Ohm’s current—voltage characteristic (CVC). s;l'[u“ and S;'l‘ are the

spectral densities of random currents parallel and perpendicular to the electric field,

70 and 7, are the energy and momentum relaxation times, respectively. 1: superlinear .

CVC, 2: sublinear CVC. Flgure -

We can now use the definition of noise temperature as
“ S ()
v -l
Yl (2 U'))

which describes the electrical noise power transmitted from a sample with small-signal
impedance Z("’) to a matched load with impedance 2 ‘ ({\ , in unit frequency
band.
We then finally get the equations for longitudinal and transverse noise temperatures:

t;:' - ’)l P 0_| Fl

nCe
Twy(f) =T [1 + (“7;)22052 (F2 Lo ) (7)™ + 7] 1} (8)

A 4VTo

At sufficiently high frequencies W JLI‘C“, we have TN = T .
At low frequencies (NY73 JEIT“, longitudinal noise temperature is always higher than the

physical temperature. Transverse noise temperature equals physical temperature. C,f c[ccf‘ms )

—
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The L spectral density can be bigger or smaller than transverse depending on

sign of Jd‘/ ‘ﬂ' . For most semiconductors, 0 : < O since scattering rates increase
with energy and hence conductivity decreases as higher energy states are occupied (e.g.
higher temperature). So we often measure a decrease in spectral noise power with increasing

FE field for ‘warm’ electrons.
CAr—r

We should not view this noise as enhanced Nyquist-Johnson noise since the magnitude and
- -

frequency dependence of the noise differ from equilibrium one.

Finally, note that what we measure with electrical measurements at contacts on a sample
is fluctuations averaged over sample volume = spatially uniform component. There also
exist spatially non-uniform fluctuations that can be described as hydrodynamic waves of
electron temperature and density of wave vector E [for frequencies L& )] microscopic

scattering rates|. They modulate the optical dielectric permittivity 2([(, ¢ “’) of the

electron gas and hence lead to observable light scattering in a semiconductor.
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