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[credit for course materials: Prof. Jan von Delft]

Tensor renormalization group (TRG)

Goal: compute 2D contractions by coarse-graining RG schemes (instead of transfer

matrix schemes)

i i N Oi, : \0’”‘. i 7
Applications: SR, |, ln
b (. G 4 L @-L-@->
iy O Gy
"y . . A e 4 t @@L
Partition functions of 2D classical models ; 29 5 [q

Y]

Imaginary time evolution of 1D quantum

models.

[Levin2007] Levin, Nave: proposed original idea for TRG for classical lattice models.
Local approach: truncation error is minimized only locally.

[Jiang2008] Jiang, Weng, Xiang: adapted Levin-Nave idea to 2D quantum ground state
projection via imaginary time evolution. Local approach: truncation is done via ‘simple
update’. TRG is used to compute expectation values.

[Xie2009] Jiang, Chen, Weng, Xiang and [ Zhao2010] propose ‘second

renormalization’ (SRG), a global approach taking account renormalization of
environmental tensor (‘full update’). Reduced truncation error significantly.

[Xie2012] Different coarse-graining scheme, using higher-order SVD, employing both
local and global optimization schemes.

[Zhao2016] coarse graining on finite lattices.
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[Evenbly2019] propose core tensor renormalization group (CTRG) which rescales lattice

~bosd
size linearly (not exponentially), but at much lower cost 0( ) rather than &‘xa) ?( ém

t

1. TRG for 2D classical lattice models
[Levin2007]

Goal: compute partition function of 2D classical model

Strategy: Express partition function as 2D tensor network, contract it by coarse
graining procedure.

Example: 2D classical Ising model on honeycomb lattice [Zhao2010, Sec 1IB]

Honeycomb lattice e &

x 4
is bipartite: Q_/;\'

[unit cell contains two sites, labeled 4,5 , and three bond directions: 3([ \(('L ]

Hamiltonian:

H - "’i 6—0 o\el O'“Q '_‘_i\ (ISI\"J (/Mﬂglt)

nearist neylées, 160\( 0 €

Partition function:

< C;*lm = f v C*ﬁ&lﬂ‘ =2 T 0,

Z = ; L )
{6"5 40’7) (l¢l7 :@u‘ ?6—'3 047
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‘Factorize’ the dependence on 0—¢ *o\g‘ by performing an SVD:

t !
et‘( -~ (Sk) ((0(.) Vow;;‘ g N S‘z Sﬁ. \/ 6y
/ L « ‘/J~ ;__\/ (— . . o—— =% = e—
Q b EQO}# ch.

(1el) (m ratcid)

ﬂ [Note: in following we will not distinguish upper/lower indices] (d( Ao bys ace ({,1)
Advantage of this representation: spin dependence has been factorized. - 0\( nea Q

(s 6N
Price to pay: additional 2D bond index, Ké( l,lg has been introduced. Fgp 5° 6

Partition function now contains products of Q matrices on all sites. Because of SVD, a
given Q matrix is localized to a given site. Hence, the sum over all spin values can be A

taken before the product and summed over for each site. To accomplish that, we group

all Q’s connected to some site ! on (A lattice, and sum over C, , for given 3(\1'2 GZ [( )~5

a Q Q (5,4 ,\,\J?(c))
- 0? Qd‘lx Qo\e(/ QG’;Z t
1

W

a
—rlgl) X4z

‘0"\,(‘/ };L:Lﬂk
Sameforsite § on b lattice, sum over 6’€. P

¢
- xb
Teeyen q, Yo Q‘T g b2 ‘<j
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SN YT
Q\j\)(c)

Then partition function takes the form

=2 T 6,,
Z 1% (94‘7 i
q

b
= 1T ]l: TCt))Qc{tz( T(t‘)xl‘lvl'(

1 (
Leb
um over virtual indices on all nearest-neighbor bonds

All statistical physics models with short-range interactions can be expressed as tensor

network models, i.e. Z - T( T" T
,NL«of

[more examples in [Zhao2010, Sec ll]

Contract out the tensor network by coarse-graining

‘rewire’: switch from vertices with external leg pairings (i,j), (I,k) to vertices with pairings

(i.1), G:k)

- /l\_‘-b
S x 7O Ny

trace out bonds on small triangle
to define updated T= -tensor

. . i |
'l i I \m ) U A
— — n|A o g6 @)
j k i \%
J k j K
D

reshape SV truncate
to bond

dimension DCM\,
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Fig 3 from [Zhao2010]

L{ 4)
¢
trace out bonds

on small triangles

>

rewire

coarse-grained

lattice
dashed lines depict original bonds,

solid lines depict rewired bonds

b
Iterate this procedure, thereby coarse-graining lattice step by step, until T (T reach

L Y 4
fixed point values, T" (T . Use these to compute partition function via

and from there the free energy per spin, and the magnetization, etc.
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2. TRG for quantum lattice models

[Jiang2008]
Goal: compute ground state of 2D quantum lattice model
~tHc
Strategy: iterative projection via @, , compress by ‘simple update’;

compute (“H((? and (‘ﬂé‘“‘? using TRG of Levin & Nave.

L

Model: S: 5 Heisenberg on honeycomb lattice.
(§
1—(4[*"/!
Tensor network ansatz: WC')‘l 22 o ‘ ["f]_x_
.......... 4 e g Y A

,L') < +Tf Tr 11- A Xg‘ XZ __________ RS S m) /Y

feb Wew Yo CTE N A LS S
o o B z
gl"b(L W(l:l." ‘/\z. N )‘v,.
P o
g, A A

Xz dxd mitre ft Cafam infh, o e nuvom e

Ground state projection via simple update

tf = (\Lx T“l““l

Suzuki-Trotter:

_Hxt NgT
-Ho ¢ * 6“1 e\".t -va(C")

MV\

I Y4 T2

(<
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Sequentially update X, y, z bond using these three gates.

-szu"b("' 0

5 1
A~ 4 ~ o~
DU DA sip \U A, R 5 a7, 3 4
= =H E= o= =
M Ny Ay R
truncate 61 ok toD I’enc.)rrnallzed
original

(#)

“ 4 -
A = XZ )‘y U
§ s Kyt sk 6 e f
Y2
\ 1 i legs
‘simple update’: outer legs of)—( contain —&= , Which account for the
‘environment’ of )—(( in mean-field fashion. Without including these )\ factors

in definition of S, procedure does not converge.

-Similarly update y and z bonds. This concludes one iteration.

—_— e

-lterate simple update many times.

T O . ™ w"y
-Start with T () , gradually reduce it to
(A

-Number of iterations needed until convergence: [ OS*[()

<LH % 7 is a double-layer tensor network.
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Use TRG (Levin & Nave) to contract bond indices of double-layer network:

Start with a finite system, and iterate until only six sites are left, then trace out final

bond indices:

‘\

Results [Jiang2008]
0.30
P TABLE II. Comparison of our results with those obtained by
== other approaches for the ground state energy per site £ and the
staggered magnetization M of the Heisenberg model with i = 0.
0.25 - E
— Method E M
=
= o Spin wave [12] —0.5489 0.24
0.20 F =— D=5 Series expansion [13] —0.5443 0.27
—9-D=6 Monte Carlo [14] —0.5450 0.22
~e— D=7
e Ds «—Ours D = 8 ~0.5506 021 =001 €
01%0 02 04 06 08 1.0

h

FIG. 5 (color online). The staggered magnetization M (%) as a
function of the staggered magnetic field, at different D.
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3. Second renormalization (SRQ) of tensor networks
[Xie2009, Zhao2010]

Goal: include influence of environment when doing update -> ‘global optimization’, ‘full
update’
Two applications: (i) partition function of classical 2D models; (ii) 2D quantum ground

states.

qQ b
T
lea Q)Kc \QZ( Cet»))Q(Yllz—pl

t'eb

X Y

reshape reshape

(i) Classical tensor network model Z = ‘[’T/

SVD minimizes truncation error for rewiring M . However, we should minimize
truncation error of partition function Z.

Renormalize environment

Partition function:

= Tr M E iH' h >;
= g Mh‘,ju GJ“(U f’lcc,yn }%%zﬂ\

convent|on counterclockwise
assign ment of indices
9 B,



MCE 201, APh 250/Minnich Module 7 Page 10 of 29

Goal: minimize truncation error of Z.

Strategy:

() Compute E = (a) cheap mean-field approach (‘single update’)
AN

\ (c) more expensive forward/backward TRG (‘full update’)

(i) Dosvbon ML .

Let’s discuss (ji) first.

(b) on finite lattices

Minimize truncation error of ME [Zhao2010, Sec |lIB]

N
— M (A ' [ no-
= ¢ . - k. Svd g -
2 L €Jm. oS R
¢ \
w -
€ /\,Lt /\‘11
f ‘ bL D’l. D‘L :‘>7_ 1)1
with E :Wl\/ — * #o#)g#qru
W A‘(&AVJ\ ./‘t
\ A
and M - A‘k V.fMuA
1, XA \77L

D D A 2
- 0<==>=‘Q=O=Q=O;/>=’= — D ——0=— "
A\(k V‘I‘ Mm W /\lu\F — 93‘2 2 LZB
r(\rvu_‘n f(“r\ D - 0

n
Since Z :T( M , this truncation directly controls error in partition function!

It knows about environment via q‘ A ‘V‘r( (6 )

@ P
Now express M in terms of truncated objects, u‘ /\ | V f
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[
To this end, first invert relation between M and M , using Utﬂ = V 1\\/ S.I

\
then insert truncated version of M 4 M \’ A o~
. . Q] b
and write as product of two vertices: S ¢

!

a b Lt

with indices:
M g, = Sl;,n S"(J'L s

Now we return to (i): actually computing the environment

. . ’ . . .
Computing environment tensor E using simple update (mean-field approach

i ../l
i I i, 0 U -
M
ﬁ%*X“X >
: kjkjvk _LH
/i

¢
M =W /\ \/ defines the

‘singular bond vector’ /\ , which measures

entanglement between two sites. It can be used directly

to obtain a cheap, mean-field approximation of environment (‘simple update’)

J /\.'/\5/\&/\(

-Take
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n a

L4 mat
- Compute M , then do SVD: M - a\ A \) 2%}
L - New Bal\l Ju

Ca
Q
- Use new /\ to recalculate E(M [ K , etc.

-lterate until convergence (typically 2-3 iterations suffice; near critical point, more are

needed).

(i) Computing environment tensor E using finite lattices

The next best approach that improves on the “cheap environment” above is to make a

ﬂ A=A
Foa(TY 1

| Zm SN 3
w0k r ‘-""\,.."\:TIWW(:«UT:L{A T R &

finite lattice approximation for the environment. S.( (T\ - ( -

—~ >

- Vs Sy
P \ ) o A ——
~ . X
‘f:‘:‘ 10° \
RSy S —1RG
; . 9 — & pomnls
(a) 6 sites 10 jpnimi
’ M points
10 22 points

0 =55 g 38 40 42 a4
|
Cot feud

FIG. 10. (Color online) Relative errors of the free energy for the
Ising model on a triangular lattice obtained by considering the sec-

ond renormalization effect from four finite environment lattices

j::=-~~0:'
which contains 4, 8, 14, and 22 sites, respectively. The configura-

(b) 10 sites (d) 24 sites tions of these environments are shown in Fig. 9. The TRG result is
also shown for comparison.

Including even just a few environmental sites already leads to big improvements!
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(i) Computing environment tensor E using TRG [Zhao2010]

‘Forward iteration’:

i I

i 1 i 1 U/ a

(@) -> (b): Rewire environment j¢ 4 using data at %T{ — >"< __*%SB
! . , S

J k ] ‘ k j \'% K

iteration n: 'f'
) () () (o
(/) -
T T ) _ M - U N \

(b) -> (c): Trace out small triangles T=%5

four 5 are left over

(c) -> (d) + (e): Identify new environment

. Al
' e o o e
a1l [.
AI i Te ,—""‘ . 01‘1503&5 j\“"’z'*i%gfi“o’/"‘
(e) looks same as (a), only rotated by . S inke < ,n\d,i»'ak A
N © 5 wy s ‘?’ 57/,..\;. XI)’ SS 0 2 ‘(TY
—S T 7 g% T
90 degrees, and rescaled. v E“") R T
(e) (d) (c)
CA—
Ctrark, Fenarmaling
lteration relation: E M
Ca-) (") a ¢’ b L
E“ i E("-\l gl ! Th S‘l' S(
legyle Lepl [t F "y Tlge

-Start with a very large but finite number of sites.

-lterate until only 4 environmental sites are left.

C) _ 1
-Compute final environment, E , by tracing out open indices.
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{’u* bl S bengiey N wey 0\450'“ pa by M,

‘Backward iteration’:
b
-Start from current values of tensorsT“(T and bond vectors A

(v+) EC&D

(v .
-Use them to compute E / E etc, all the way back to = desired result. = E

A

(723

«Q
This completes step (i). Now go to step (ii), compute M/ A(-M , and iterate, until /\

have converged.

Results for SRG (2nd renormalization) for classical 2D systems

Ising model on triangular lattice:

10° T

g a— (U ' ' 1G] mean field
0% T A I —e—SRG
Mean Ficld " 1 SRG
107p —SRG A 1 10°F 1
~N .
= - 7\ —— L
S /N 8
’ = 10°F
/ =
107} / \\\ J =
10" / \\y 10
10" R e e o
3.2 4 36 & 40 42 44 1075 3 16 4 32 10
T D
2. ine is: ative . . . o .
N FIG. 1 ‘(COIOT inm;) CompanA on of the r_eh“ N crror of ic FIG. 13. (Color online) The relative error of the free energy as a
free energy for the Ising model on triangular lattices obtained using - - . - .
o < function of the truncation dimension D, for the Ising model on

TRG (red), the mean-field approximated SRG (blue), and the SRG
(black) methods with D,,,=24, respectively. The critical tempera-
ture is T.=4/In 3.

triangular lattices obtained using the TRG (black) and SRG (blue),
respectively. 7=3.2.

critical state is hardest to simulate error drops with increasing D faster for SRG
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Results for SRG (2nd renormalization) for quantum ground state search

Optimize by imaginary time evolution; contractions performed using SRG.

Y34

Compute expectation values such as (LH ‘f?/ using SRG too.
SRG yields more stable results than TRG! [Xie2009] : Heisenberg on honeycomb
03 —=—TRG 024 ' ' '—II—TR'(}
——SRG —o—SRG
-0.540 1 023l
w” -0.545 F - 25 02
-0.550 ¢
021 )
-0.555 "
3 4 S5 6 7 8 3 4 5 6 7 8
D D

FIG. 5 (color online). (a) The ground state energy per site Ej
and (b) the staggered magnetization Mg,, as functions of the

bond degrees of freedom D on honeycomb lattices.
X7 ————————— .
! ! 0s40f ¢
:’3 \

> 0540f L m— i 5 osaf |
%u o TR -Saaeg 8 u‘

- O —a @ [ \
I.E 0.5442 | /,' 900040000 :‘-'_!f osa2f |
0 ( Adbh A z \
-/ . ,A"“""“ B osaf \
7 -0.5444 | "_,_,A/ 2 .
o O o544l oo
E ‘/ —=—D=6 i Y
3 -0.5446 D=8
< 0,545 . . . . . L .
6] —4—D=10 03435 4 6 s o 12 416

-0.5448 - Bond Dimension D
40 60 80 100 120
. 20. The ground-state energy of the Heisenberg model on a
D FIG. 20. The ground-st ey of the Heisenberg model

cut
honeycomb lattice as a function of the bond dimension D obtained

. by the SRG with D,,,=130.
FIG. 19. (Color online) The SRG result of the ground-state en- v e W Bew

ergy as a function of the truncation dimension D, for the Heisen- Bt
berg model on a honeycomb lattice. D is the bond dimension of the 5% _ -0.54440 E” = -0.54455(20)
wave function. )

Energy does not decrease with D_cut, because imaginary-time evolution/SRG is not
variational!

For reference: very recent results [Lan2019, core tensor renormalization group] reduces

cost of TRG from 0(0{ > - OCA(“(>
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Graph-independent local truncation (GILT)

Goal: improve TRG by fully removing local correlations, including Py

those in local loops. 3

Strategy: devise truncation scheme based on ‘environment spectrum’

of local tensors.

1. Motivation

TRG is a concrete, quantitative implementation, for lattice models, of Wilson’s RG idea:
- Conlle jminin, (
ro=Tr
inf‘“)‘ll (‘C/M)‘ [ enimmy (I‘z.,l S1Y4
This generalizes Kadanoff’s block-spin RGH(j) ’JH((T))‘E“?(,)Which approximates
coarse-grained system by same Hamiltonian, but parametrized by rescaled coupling.
TRG instead allows the form of the Hamiltonian (or corresponding tensors) to change.
BUT: TRG, as formulated by Levin and Nave, does not fully remove all local
correlations.
Reason: it is based on SVD of local tensors, so removes local correlations only for ‘Le\e //l"
tensor networks’. Effect of environment is not included (SRG/full update is an attempt lu °
to do that). As a result, fixed point tensors still include some information from short-
range physics. Hence, TRG does not yield ‘proper RG flow’ (which should eliminate all
short-range physics).

Needed: schemes that fully remove local correlations at each length scale.
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Some key players in this quest:

Levin himself pointed out that TRG fails for ‘corner double-line tensors’ (CDL). (Public
talks, 2007)

[GU2009] Gu & Wen: clearly identify above problem, proposed ‘tensor entanglement
filtering renormalization’ (TERG) to remedy it. This led to discovery of ‘symmetry
protected topological order’, and a classification thereof via structure of fixed point
tensors.

[Evenbly2015] Evenbly & Vidal: propose ‘tensor network renormalization’ (TNR), which
goes beyond TRG by including ‘disentanglers’, allowing removal of all short-ranged
correlations at each length scale.

[Evenbly2015a] Evenbly & Vidal: show that TNR generates a MERA (multiscale
entanglement renormalization ansatz) structure. (MERA was proposed in [Vidal2007,
2007a, Evenbly 2009]

[Evenbly 2017] Detailed description of TNR, including strategies for optimizing
disentanglers (carried over from MERA, as described in [Evenbly 2009]). High cost. 0(0DQ)
[Yang2017], Yang, Gu, Wen: propose loop optimization for TNR (loop-TNR), which is
more effective than TERG. Also more effective and cheaper than TNR.

[Ying2017] Proposes ‘tensor network sceletonization’ (TNS). Separate steps for coarse-
graining and removal of local correlations. Needs costly iterative optimization. Blind to
nature of local correlations.

[Bal2017] Bal, Marien, Haegeman, Verstraete: propose TNR+, similar in spirit to

[Yang2017], but using element-wise purely positive tensors.
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[Evenbly2018] Proposes ‘canonical form’ and ‘optimal truncations’ for tensor networks
with closed loops. Optimization scheme include environment information. Simpler than
optimization scheme of MERA/TNR. Performance: better than TNR, loop TNR,
comparable to GILT.

[Hauru2018] Hauru, Delcamp, Mizera: propose ‘graph-independent local

truncations’ (GILT) of individual bonds of network, based on analysis of environment
spectrum. Very simple, clear scheme. Outperforms all previous 2D approaches. Even

applied to 3D systems!

2. Why is TRG insufficient?
[Hauru2018, Sec 2]

Representing partition function as classical model as a tensor network (graphical

argument)
| | } | W . .
—0 o o o — -each site hosts a classical
—0 o o T — () configuration variable// g
(3

-(i) each bond is
characterized by Pku

— T (o2 ag -

Boltzmann weight, W @ C

= mmMT
@ysvbD W Mv\..,c[tsh‘ulﬁf"""

p—
e
B

o-
NS

C

O—

-(iii) at each vertex, contract
—-0—0—@ bonds to obtain 4-leg
—0—0—O0 tensor | /A
B £ )
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Single iteration of TRG for square lattice:

y T s= iteration step

i A(S)
() Use truncated SVD to A
(s) 4) \J> 5 3%
split 4-leg tensor A
=0—0—0—¢
along different
i =0O0—0—"0—
diagonals
(i) Contract sets of 3-leg —? <|> ﬂ) €

tensors to obtain new 4-

leg tensors.

Shaded red loops represent short-range loop correlations. Step (ii) ‘captures’ half of

“H) UYASY TS
red loops; effect is encoded in A . But other half of the red loops remain, and eerre
nearest-neighbor correlations of coarse-grained tensors.

This violﬂ principle of RG that coarse-grained description should not include short-

ranged (UV) details.
As a result, fixed-point tensors depend on non-universal details, such as exact value of

temperature. (Only T < Tc or T > Tc should matter).
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Corner double-line (CDL) tensors: an extreme example where TRG fails completely — 6“4 w‘“

(Hq‘k\
260
s DU

ROOOE
& bk~

)
J
O
O/
<|>

J
0O
A
0
A\
CP

J ain
S“Zj‘?ﬂtm ((tl b

. _ . ACDL — 4CDL
Each index is two-fold composite:

ijkl = i)y )k k) 1)

= Mil.i: M,ilk:M/\'llelli:

—

Two observables on same plaquette are strongly correlat'eJd)\Observables on different
plaquettes are totally uncorrelated.

CDL model is a toy model for purely short-ranged physics: it encodes no correlations
at length scales larger than a lattice spacing. Under a proper RG, it should flow to a

——— N
trivial fixed point.

However, TRG leaves CDL tensors invariant, i.e. CDL model is fixed point of RG
transformation.

This example illustrates: TRG fails to remove loop correlations!

Terminology for this problem: ‘accumulation of local, or short-range, correlations’.

This problem gets worse in higher dimensions....
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3. Environment spectrum
[Hauru2018, Sec 3]

Consider a local neighborhood, T, of a global network.

Goal: make changes (typically truncations) to a local

subnetwork, R, of T, without affecting T.

0 O

E =T /R = environment that is left upon removing R from T.

DosvD, [ :USU+

between incoming legs (coming
svd
— — O
from R) @

and outgoing legs (going to

outside):

Singular values = ‘environment spectrum’ (quantifies how much R affects outside
world)

The kernel of E (the incoming subspace that is mapped to 0) is irrelevant to outside and

may be discarded. M AmieNn 5
01\H
r
ouk w S vt ¥ vt
in E = “ T R L I:l‘:“ |
a O "
L\Spom{Kw (e} ()
W

(k) s
c ko (€)
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. QR ¢ koE)
then replacement k ) k( =

does not affect outside world.

Il

L) 5‘”'\14*\1 N
ker ned

(
If p\"k él ‘low weight subspace of E’ (where, say, 5,‘<i, ) Msubspm
then R-JR affects outside world only weakly. &=~ Y .

_ 1 1
Simple example: splitting 4-leg tensor via truncated SVD anc‘fMN/d' 52ng\(Um
Consider first step of TRG: /){ 0, a8 dm_
U) 5 tuncate [/ 5
f%*%ﬁjﬁvfz v
bind (= 'Z*

This can be formulated as truncation of environment spectrum:

Choose R = two legs = product of two

Ry
- | R=— T:'if'#% = E
identity matrices: ’ (2

E =T, since cutting identity matrices from outer legs does nothing.
——

If R is replaced by R’ = projector removing low-weight subspace of E,

U
(with intermediate bond dimension'}("’l ) Xl
R =X py =001
" X X

then we recover SVD-truncation:

_\
l Ul it
R R 4%; (18)
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4. GILT: Graph-independent local truncation

Let R = leg in network T. For concreteness, let T = plaquette: x
x

R X X X K SO X+

l\ AR
N (K

Il
|

Environment spectrum S quantifies which part of R-space matters only for physics

internal to plaquette. To exploit this information, make basis change on leg R:
L6 Ly

13 9 q ferne @
L‘!‘A{“H o
L {v vecfor, with components ;r/ace = sum over 'top' indices
Nal iw S R S O

u‘\'u - I(XL

bottom index fixed to 5

—(@) = (9,0,.-1,.--,6) = vector with i-th element = 1, all others = 0

Inserting environment definition into above, we see that environment matrix S, which is

diagonal, multiplies elements

of T ,
J; Re (2
;i*igi ¢ T:i:I(z 2
(
] t.
+( ‘ | k',,
So, if we replace I by some other value, "] , differing J'J ,)'(1

{' N P - -
frorm‘)nly for (€ low-weight-subspace of E, S; Li, 0L4¢'¥ <.
v
then T changes only by 0({) . f’IL&'r\‘
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(]

Correspondingly, we can replace leg, R :IY

( €
by a matrix R = _@~ - 01
while T hardly changes: e

H a(e)

This freedom can be exploited to make matrix R’ have as low rank, ’X , as

possible. Low is desirable, since SVD of R’, followed by redefinition of neighboring

sites, brings down bond dimension to

alij |

Optimizing the choice of t’

[Hauru2018, App B] 4«

(NP (
The rank of Q( - / - Z fi Q; as a function of 'f,

- g(ﬂ IE

is a complicated cost function to minimize. Simpler alternative: m|n|m|ze

§MJU°( (

Cavem :“/{(“k Tr [ﬂk ) i W/;\:sga\ (

Sal
\0 W

Rationale: minimizing the cost function requires reducing the individual Y; and the

more of them come close to zero, the smaller the rank of R’.
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Moreover, ( Z M KA
e Y E T

(x (
= I (*
|

So, those elements 'f" that we are free to choose (associated with low-weight

subspace of E) should be chosen as small as possible.

On the other hand, the replacement of R by R’ causes an error.

2
Cer ror —

g3l
o €

This error should remain O(S) . Thus minimize combined cost function:
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Summary of GILT algorithm for truncating leg R in environment E:

() SVD the environment E to obtain the unitary U and environment spectrum S (¥)
A\
(i) Compute the traces +“ = T( U ( A X +(
(iii) Choose the vector t’ as above, and compute matrix R = 2( o
(=

(iv) SVD R’ as "
law‘““x [Q\:us\l”+ -6 - 4B

, - 1 § U
Repeat (ii)-(iv) on same bond, now with R’ as input: Ut it [t
_@_ — = —

(v) Once singular values S of R’ have

converged, multiply (Adzlfs \/rinto neighboring tensors. @-—‘G - &

+¢
mt \l
C - L
(*) We only need U and S, so instead of full SVD of € /USV , it suffices to

compute eigenvalue decomposition of the Hermitian matrix

géf s (ASLU = (ASVJ‘VSU\"'

This is computationally much cheaper, and for square plaquette reduces cost to O(Z ) ~
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5. GILT Tensor network renormalization (Gilt-TNR)

Problem with TNR was: local correlations are dealt with properly only around every
other plaquette. Remedy: before each TRG step, apply Gilt to all four bonds of
problematic plaquettes.

The four matrices R’ must be created in serial, not parallel, since each one modifies
environment of the others. Together, they truncate away any details internal to

plaquette, by modifying tensors at corners.

'no loop correlations inside' !
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(i) SVD R’ tensors lg,‘,ud\\(; @ G (@
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(iii) Contract to compute B1, B2. This removes

A single iteration of Gilt-TNR:
Te—— (7)
() Insert R’ tensors on bonds

internal correlations for half of the plaquettes.

@) 4
(iv) Split B1, B2 tensors via standard TRG. y '#’“
OE-O0D g

(v) Contract to compute new A. This removes

correlations from other half of the plaquettes.
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Main advantage of Gilt-TNR over rivals:

-‘simplicity and generality’ (minimal working implementation takes ~100 lines of code)
-No iterative optimization of truncation.

-Graph does not change.

Applying Gilt to non-square lattices requires simply changing the neighborhood T used
for Gilt step.

-So efficient it has already been applied to 3D Ising model.

6. Benchmark results
[2D classical Ising model]

-TRG and Gilt-TNR obtained 10 , , , . . :
= ) m—a TRG |
with same code; for TRG, Gilt &~ 107 F e—e Gilt-TNR [
< .
> 6 5
was turned off. g 10 5
(5}
, , g 107 4 ]
-Gilt-TNR orders of magnitude 3 :
‘5 1078 .
more accurate than TRG = i ]
£ 1077 ¢ 3
-at only moderate increase in @ - !
E 10 — 61 min‘-f
. L
run-time. ~ 10-1t L ] ] ] ] !

10 20 30 40 50 60 70

Bond dimension y



MCE 201, APh 250/Minnich Module 7 Page 29 of 29

RG flow of TNR and Gilt-TNR
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FIG. 7. Typical environment spectra of a single leg with respect to
a square plaquette in 2D (bottom four spectra) and a cube in 3D (top T = and E =
four spectra), each labeled with the corresponding bond dimension
x . Recall that in each spectrum, the large values correspond to parts
of the vector space of the leg that are relevant for physics outside
the plaquette or the cube, whereas small values signify contributions
relevant only for short-range details. The spectra in 3D can be seen
to decay much more slowly, indicating that larger bond dimensions
are necessary, before truncations with a small error are possible. The
behavior of the spectra as x is increased, is also somewhat different
in 2D and 3D. In 2D the longer spectra have more values mainly at
the bottom end, whereas in 3D new values appear almost throughout
the whole spectrum. The example spectra shown here are for the Ising
model, from systems that have been coarse grained thrice. Many other
choices of system sizes would yield qualitatively similar results, and
the same overall difference between 2D and 3D can also be seen with



