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Microwave noise in semiconductor electronics

Austin Minnich, California Institute of Technology
Spring 2020

Measurement and microwave electronics

Experimental physics and astrophysics relies on the ability to measure very small
electrical signals. For various reasons, often these signals are in the microwave
frequency domain (e.g. GHz - hundreds of GHz). One example:

W

EVENT HORIZON TELESCOPE COLLABORATION

This image was taken using an array of radio telescopes over the world.

An enabling technology for advancing science is therefore active electronic devices
that amplify these weak signals. A workhorse device for microwave electronics is the
low noise amplifier, based on various architectures of transistors.
g__\_*___

You can buy them in a package like this: oﬂw"(

The signal you care about goes in, and an amplified signal comes out. However, some
amount of noise is unavoidably added.

Spring 2020



MCE 201, APh 250/Minnich Module 1 Page 2 of 38

This class is about fluctuations in semiconductor microwave that impede the accurate
measurements of weak signals. Thanks to Carlton Caves (see here) we know that
quantum mechanics requires some amount of noise to be added even to a perfect

amplifier.
b Q{LH‘U\ 0~ = L /»’/uh'l
— L gain x » T (5’ (&
wled Wb Aumber 2-TX % -tz

In practice, transistor microwave amplifiers add noise that is-atHeast-5% that of the
quantum limit. The goal of this class is to understand the microscopic mechanisms that
lead to this extra noise and how they can be mitigated.

Noise mechanisms

Definition: Noise is defined as the fluctuation of a quantity of interest (e.g. voltage or
current) from its mean value. It can be described by the theory of stochastic processes
as we will discuss.

The fluctuations have various underlying microscopic origins:
- 1/f noise - observed in many physical systems; its origin is still debated. The (4 %

frequencies at which 1/f noise is important are much lower than microwave
frequencies and so we won’t discuss this mechanism in detail.

+ Generation-recombination noise - random transitions between the conduction a?—\
band and trap states lead to fluctuations in the density of mobile electrons, thereby v 7_,'.(
modulating the conductance of the semiconductor. This noise source is also only L
relevant'_belﬂmicrowave frequencies and will not be discussed in detail.

T oee——

- Thermal noise - arises from the thermal motion of mobile electrons. The Nyquist
theorem relates the spectral noise power to the absolute temperature and the
dissipative part of its conductance/v re >i5+7"4 e '05 e

/8

+ Shot noise - originating from the fact that electric charge is carried by discrete 74 ,@ su,y}a\"’y
particles (electrons). Its spectral intensity is proportional to the current.

+ Hot electron noise - It is found that applying a field to an electron gas alters the
spectral noise power from the zero field value (Johnson noise). The generic term for
this noise mechanism is hot electron noise. We will extensively discuss this
mechanism as it is quite important for transistor amplifiers.
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Mechanism of amplification and noise sources of a HEMT LNA
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Mechanism of amplification and noise sources of a HBT LNA
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Noise characterization
[Hartnagel 1.5]

Fluctuating currents lead to emission of electromagnetic waves into a load. In
experiment, it is easy to measure the power incident on a load. Therefore, the noise
power is a key quantity. If the output impedance of the device and load impedance are
matched, noise power -> available noise power.

Equivalent noise temperature

The noise power in a band Af can be compared to the power emitted by a
blackbody at a temperature | . We can define the noise temperature as the noise

power per unit bandwidth about a frequency fjh emitted into a matched load.

Mathematically: -_ ¢ ﬁl\/"‘tn'*
_ INAE)
() =

g AS

In equilibrium, the noise temperature is just the physical temperature of the noisy
element. The Nyquist theorem gives the relation between the spectral density of

6r (urfc'\‘("
voltagenfluctuations and temperature:

C.(5) = 4T Re[29)) = H&TR
gx(ﬂ = YT e (2'(0) < ‘{kﬂok'l

whereZ(’?) is the AC impedance of the noise source around a DC bias.
We will prove this later in the class.

Under non-equilibrium conditions, we can define a noise temperature that in general

will depend on frequency: To - T/\ (5')

S, (§) = Ye, T,(5) L2(9)
= A()n(ﬂ/b‘g'
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Another way to characterize noise is the noise figure N ‘:(_S—) defined as:

NESY S 10 los, T"?(”

°

Note that the output noise power is referred to input, that is divided by the gain 6‘
so that T,\ I Tf\ / ()"

The noise figure depends on the relative values of the output impedance of the circuit
and the load impedance. If the optimal load and bias are used, we get /V ‘Fm‘,\ ,
which is independent of external considerations. For non-optimal circuits, four
independent parameters are required to describe the two-port circuit. We will discuss

these parameters later.

Modeling of noise in semiconductor devices

A common way to understand the noise performance of a device is to construct an
equivalent circuit containing lumped two-terminal elements representing resistances,
capacitances, controlled current sources, and so on.

Many of the necessary parameters are extracted from small-signal response
experiments (S-parameters). Noise is represented as voltage and current generators at
particular locations of the circuit.

ﬂMicroscopic physical models help to understand the origin of the noise and the
appropriate values for their lumped element description. Often, these models are
based on a Boltzmann kinetic description (accurate provided all relevant device
dimension are greater than a de Broglie wavelength). Noise can be computed using a
microscopic theory of fluctuations for a weakly interacting many-particle system, just
as response properties are computed for such a system using the Boltzmann equation.

Note that the calculation of noise spectra in the non-equilibrium case is an
independent problem from the calculation of response properties. Fluctuational
properties provide new physical information about the system of interest.

Drift-diffusion models are simplified equations obtained from the Boltzmann equation.
When modified they can account for effects like electron and lattice non-equilibrium in
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a phenomenological way. Noise can be computed from this approach by introducing
Langevin forees. Sy (LLS

This class will extensively focus on the Boltzmann-level treatment of noise in
semiconductors and examine the role of band structure, intervalley scattering, and
other factors in setting the noise.

An introductory example: shot noise
[Ambrozy chap 1]

Consider electrons at a p-n junction. Applying a bias leads to electron injection across
a barrier and a current.

W W 2
N, Np
2—
W Al o Dae We
@t i@ ; \
@ ‘J(ﬂ\, ] 3 )% e 'O,cf('((
seeCJED C) (CHENG o G N T
S80Sl id TR0 VO o
QOO N0 OBIEY W
0000000 © 4
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se/o0/s/00/e'e
0/el0/0/e/00l0'e .
() n
Cathode Vacuum
X X
(a) (b)

Figure 1-1 (@) Energy gap in a vacuum tube. (b) Energy gap in a p-n junction. (W, electron
energy; We, bottom of the conduction band; Wy, Fermi level, Wy, top of the valence band).

—For a given number of electrons that have enough energy to go over the barrier
(determined by temperature and DC bias), there are different probabilities for different
fractions to actually do so. Therefore there are fluctuations in the current from this
random process.

‘/)We aim to calculate the spectral noise density of this random process. Start by

considering an interval of time ‘ . Take the number of electrons passing across the
—

n 0'* ’('(nf,mjw‘(. (¢
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barrier in this time to be /\/ . For this thought experiment, we take the number of

electrons in the starting side to also be N , and that they are distinguishable.

Divide the time interval into equal intervals of A+ . The number of electrons in

intervals &% - A'f" is N -- A Notethat M,-- /1, can be equal
or different. AT
e
N

Now consider the probability for electrons 1, 17, and 23 (for example) to pass over the
barrier, but no others, in a given time interval A"' ? The probability is given by
whether those electrons do go over while all others do not. <

!

Since we have independent events, overall probability is probability those 3 electrons

go over while all others do not. N‘“ ﬂf
P (go over) A 4 | P (do not) ( [ — Af'-_t.

_/> S ——— _ &\ by
l ST gert)
ﬂ{ N p ooyl M
Overall probability: At ( A+ ove’
—/; ? - T
T N

But actually electrons are not distinguishable. From binomial theory, there are ( n;

ways to select Al' electrons out of N total. Therefore, we get the binomial
A; N-n;
distribution: N s\ ( _ ot !
)((n; ) - N/ LT T

Nswo, AJ“/T- 50

We now take the limit of T < 00

but holding fixed

>\ - Nﬂ = Sim Cinrte number

T Spring 2020



MCE 201, APh 250/Minnich Module 1 Page 9 of 38

NS
Nl =5
per gt tine, ('\) nl(W )l

X gives the average number of electrons paesm_g‘rh"rmﬁ .
The distribution becomes: ( /\/"1

fn) = (3) (= ‘
:(g(@\ (AI'AH) ( ([’%}>

nt' /\/

Second factor:

Ns® N(n-1) (N-M}) 5 |

Third factor: n
| im ( [ — _l > |
NP N

Fourth factor:

N
e [ 3)

—\ Overall result: n )\
\ Im ‘F(/\\ - _
N 3R N (
st 90

This is the Poisson distribution. 5'(/\) tells us the probability for /\  electrons to

pass over the barrier in time interval d +
Note that it is not continuous in M  since electrons come in integer numbers.

Also the key approximation here is that A-HT L‘" . It is not always true!
——

_T—: e | [—’H'—“{ Spring 2020
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Now let’s compute the fluctuation in the value of V\

The mean of /\,M(’\) is obtained by: n-) A
N NN 2N A
- /) _ N )\ - Z e
n < M(/\) = é /I‘F(/l) /,E’ F ¢ = = (n-1)!
N =9

D Mla) = A

~ A LAQ 'A _ A )\L . -2 q_(
n* = ,‘:fb_’\ F:C dn%‘n o zZ 4 wr
A A

SAA « M= KA o P(a)=A+A=A :}nl

We get the well-known result that for the Poisson distribution, the mean and variance

——

are equal.

Let’s now see how these statistical considerations translate to current noise. The

( N

instantaneous current in time interval T is: | .
T Ms{‘an "‘Mf!éoos

C,V(TCA-"

L= ’T J, A1
The mean square of current fluctuations, directly proportlonal to noise power, is:

:iir?—l”b’\
T

The mean current value is:

]
/
/ T"“
/

- AL
=

¢

<

PN

\
SN
‘lj)
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To turn this into the conventional Schottky formula, use the handwaving argument that

—

I is on the order of the bandwidth b f . Then we get:
= aq LASF

where the factor of 2 accounts for positive and negative frequencies.
In practice, physical processes (like transit time of electrons through a vacuum gap,
etc) limit the bandwidth to some finite value, even assuming infinite bandwidth

electronics.

Some terminology

Amplitude density

The instantaneous current flowing through a device can be written as:

PR ) = Tor i(+)

This decomposition is not that useful for stochastic processes since we generally don’t

‘/

know the exact ‘r( )in advance. We can instead compute probabilities for Iy (+) to
be between Ia & T, +AT,

to get the amplitude density function:

f(g,) 6T = P ( L, £ i (6 £TeaT)
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t 1(/y)
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Ay \/ Y \/(/o)

i=lysiny
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Figure 1-4 Time function and amplitude density
function. (a) Stochastic signal. (b) Sine-wave signal.

-\

Its dimension is A . We can also get an amplitude density function for
voltage, "S'(Ub) ,with units  V
For shot noise, 'f (on is also a Poisson function since ;T((’\ is proportional
to N\,
—>)Exercise: compute the amplitude density function for sin(x).
Power density
Since we have the mean square of current fluctuations, we can define a noise power:
S —
P = ¢ R = 1 IR é_{
Kuc(‘u'\?u n ban! W;A'H\
The power density is the power per unit bandwidth. For shot noise, we have:

P MIK [2\/_

7 H2a Spring 2020
A€
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We see that for shot noise the spectrum is white, or frequency-independent. In general,
oo
4 -
p=/’(f) Copep(e) P:g a(5) df

6
frepacy o — = g e
We often calculate 17, W | and leave them in that form. Therefore we define

T ve “l’ag e
the spectral density of current fluctuations:

C- S(5) (Al /. )
<. 5(a) 0 4‘/»:\1 o v/f,ég—f)

We can also define rms noise current and voltage:
—_— - )
fems = | 7% o M T J U
Note that we can only draw conclusion about the power spectra from the above

discussions, not the noise or current spectra.

Elements of probability - distributions and density functions
[Ambrozy Chap 2]

In general, we don’t know the exact signal originating from a stochastic process.
However, we can predict the probabilities of instantaneous values from an
understanding of the microscopic origin.

Some terms:

A random trial is an event with a non-unique outcome. fa \\ & é‘ Ce
~—~—

Elementary events = possible outcomes. Mathematically, a possible event is a subset

of a set SL containing the elementary events, which is known as an event space.

Kolmorogov axioms: a probability function p(A') is defined on subsets of )7 if:

6 ¢ Plr) £ A(£A) = = A
pln) =\
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if A( cv . A (. are mutually exclusive (either finite or infinite series is ok).
A random variable can be defined as a real function over the set Q .
Calling the elementary event w , we call the real number characterizing the

elementary event as 5 . Interpretation: 3(&/) tells us the numerical result of a trial.

Example: consider electrons passing over a barrier. The i-th event is n r electrons
passing over the barrier. Here the random variable is also '\(

But, if two barriers are connected in parallel and we measure the total current, the

= nit“",‘énd various combinations of elementary
\

events (individual ﬂ;’ ) are relevant for the random variable nq'

(
relevant random variable is f\‘

Distributions

Now let’s define a stochastic process: a single parameter assembly of random
variables, } (+) where the parameter -" continuously covers the time set.
Example: (\;‘ (defined in the previous example) is a function of time as a parameter
and is composed of a random variable defined on two event spaces.

1

We can now define a distribution function F[X)of a random variable l} .
F(x)= P(3 ex)

It gives the probability of & having a value less than X .

Properties:

1. Monotonically increasing

2. Limitingvaluesof0and 1:  |im . (ﬁ) =0
X~y =00
Lemn g(ﬁ\ = | Spring 2020
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£(x) = {:(X.)

3. Continuous from the left:

[l(M
Loht
(0ight) € X - €

F(X)A Flx) 1

JLU | ulJ

|
TR T ] ax X

(¢) (d)

Figure 2-1 (a) Discrete distribution. () Continuous distribution. (c) Probabilities
of discrete distribution ('d) Density function of continuous distribution.

_ _glx,)
From the definition, the probability that P (\(L E X £ )(x\, = F(Xh) F ¢

Discrete and continuous distribution functions can be defined.
Discrete: the possible values of 5. are a finite or infinite series.
‘- =\ . .
Define P( - p(% s(')so that the distribution function is:
€(x) =P(3ex) > 2 P
X?Lx
As XA  the sum of p, tends to unity.

>
Continuous: a distribution is continuous if a function X'\ - O exists so that

Clx) - £(x) = Plaexex)

Spring 2020
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We can define discrete probabilities P4 and density function ;(f) as:

Discrete Continuous
b= € () -F(xi) fly)> 3E
X
Although the density function of a discrete function is not strictly defined, it can be
approximated by a continuous function for sufficiently large measurement numbers:
Lo $0) axy )= P
——— JAN XJ
Here bX‘\/ is the uniform increment of the random variable (voltage, current, etc..)
We actually already did this conversion when we derived the Poisson distribution.
Expected value and standard deviation

For a discrete distribution, we have values ¥, ._. f‘ with probabilities 6), « Pf.

) ( ' SN . bserdatves
Expected value is: M[B) = i Xn’ff pr' - A;‘m _,_1_'_. B %’Of‘ K
(= SR
Notation: <$> - M(E) Ol ot
For a continuous distribution, -{-ﬁds

MGy) = § ) % T
where we require that -

j"" Ix ) F0)Ix 2

A
M(i«) is often referred to as the first-order moment of the distribution.

Some properties:

Homogeneity Additivity

M(cy) =cMB)  mGE-+3,)2 MUY MG

Spring 2020



MCE 201, APh 250/Minnich Module 1 Page 17 of 38

If we have two statistically independent random variables, then

M3, 3) = MGRIML)

This condition is satisfied if the joint probability, defined as:
p(3, O, B tx) = 6, %)

has the density function that separates:

g(x ¢, x) =+ (1) $.06)

We can also characterize the fluctuations of the random variable about the mean. We

o~
It is also described as the square root of the expectation value of(S“ MO))\

We can rewrite the definition in a more convenient form: 01‘(} ) = M (5 l) - M ( §)

PN

Hence the variance, , is also the difference between the expectation value of the
random variable squared, and the squared expected value.
Side note: in practice, using the first formula can be numerically preferable. Say we

have some error in our knowledge of the true expected value. Then,

MGy MO+ e

On the other hand, using the other formula,

Spring 2020
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\,(\,J The error is higher in this case since

If we know the density function, we can compute the variance:

Discrete: 01‘(1) - 2()(; —M(S))J\P/,

Continuous: d
0(1) = Sw (x - MG () dx

-
Writing the continuous formula in another way:

D'(s) = M&’/"(L .
_ G 60K

Here Ms\ is the second-order moment. M

Some properties:

Effect of scaling and shift.

0°(aysb) = i 0'C5)

So standard deviation is multiplied by I”“ but additive term leaves it unchanged.

Variance of mutually independent random variables (proof to do in HW):

0\(5( .. 4'77/\) = OL(SI)"‘W £ ‘)L(é/\')

From this result, we see that if independent random variables have equal variance, then

0 (3. th) = A 0})
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Higher-order moments can be defined as
Y
M = S x" )C(%)lx
/Y

Higher-order moments tell us about asymmetrical features of the density function. The
third-order momentjs’{ells us about skewness, fourth-order tells us about kurtosis
(nature of the tail of the distribution).

Characteristic functions and sum distributions

The characteristic function is the Fourier transform of the density function. Definition:

dv) = M) = Mlos W) * M(sn3v)

.
AR

(

1 (4
Expected value: ( discee (‘by '

Continuous distribution:

pu) = § &7 Fidx

<®

We can Fourier transform back using:

flos & § e Y

- N
—R

Some properties: 00

1. If V'—o, é(‘/);l , since é'o S(X) LX :‘ f vfo,one can show that ,é(v)l 'é"
2. |If 'ﬂ*) is even, “‘/) is real. Otherwise, ¢('U) - ¢*(V) .

L Co A/'l ex CDASU 4ate
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Derivatives: éi _ 3 5 eJ\n( x;(X)JK ,5 JM(Y)) )}4(
dv - T

({¢ _S JUX’(;(X ‘lx /) }l*

d‘u Ny

So we can get moments of the density function from derivatives of é (V)

With the characteristic function, we can compute the sum distribution of random
variables. It is useful because in devices several noise sources are present
simultaneously.

Define the random variable of the sum distribution as:

1= 5+ £

where .5, -~ lr\ are mutually independent. Then,

) v 3a
iy =m() =)
_ M(Ljv');> o M(év},,)

due to mutual independence. So, the Fourier transform of sum distribution density
function is the product of the individual characteristic functions.

?54("3 = ?54 (v) - $.(v)
Consider a two-term example: /) - 75'( + 5&
Define the density functions as

£, (%) / £ ) ;o §(7)
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The characteristic function for ¢1 (V) is just ¢|(U) 4)\(”) )

Using the properties of Fourier transforms to go back to a density function, we get
| (Y 5 y f ( ) o
f(‘f) - g ¢ S61(‘I) W)= f§¢6<n)ﬂ(ﬁ‘yt) ax,
A —0

Another way to see it: the joint probability for independent events is given by the
p;:gjdet\:-": £ (X,) ﬁ\ (’(L). But since we care about the value of the sum random
variable, defined as ({=)‘4 t¥iwe have X, = “x.‘ We then need to add up all the
possible ways to get \/ , i.e. integrate for continuous density functions.
Example: say we have two dice, and the sum random variable is the sum of the
numbers that we see. The probability of any number on one dice is VQ .
Probability to get 2 or 127 z ’ ‘(: = (/3(0

Probability to get 5?7 Rewriting convolution equation for a discrete probability:

) - % N =
f(}' Py Pl/fa =4 3C /C]

HW: try the calculation for 3 dice.

Central limit theorem {) (0ess

The noise we measure is often a sum of random phenomena with the same
distribution. Can we figure out the sum distribution, even if the number of components

is large and perhaps not known?

The central limit theorem tells us that the sum distribution follows a normal distribution

as the number of independent random variables tends to infinity.

Derivation: define 3( ‘v ih as mutually independent random variables with

expected value = 0, std dev = 0’,‘ , skewness M} =0 . (not required but helpful)
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n
The sum random variable is: - ¢
12 2.3,

Expected values of sum: M(”\): é M(Sc) = A M(},) =
rcl

~

- 0'(1)=n 0(3) = ac;

Variance of sum:

We also have:

Nq (')): M(,’q)
Mﬂ(ﬁ) ?M(Sq)

Define a normalized sum random variable as:

T _ Y 40 +5a

A

\)Then: OL(S/) _ EL)\—_ 1 . Nl,l(SI) - /AL‘(S!)
g T n 7 o1 n*a'ﬂ

Now let’s write the characteristic function of the normalized sum distribution:

- ¢(V) - /1(6’2‘, T”"( J“./r> @’

iz"/a‘

v,
We can expand the function ( /6' ) using the definition of characteristic function:

‘ﬁ( ) JV/a- ,) :M(“’ ,(? 5-L(,)
-+ 5(%)/‘1(5;) -;‘5(%]&/4[5;’\)-»,\

Since M(}i):o and }453 O | wehave

v A v
di(2) = 12T
e . N ’ Spring 2020
M(;;)~‘m e~
ke _RJV
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The sum characteristic function is given as a product of b,’ . Let’s take a log of it

to turn the products into sums. We need the logs of individual characteristic functions,

[
and let's take the limit as 1 3 #J , to get In ( l Yy )’° Y

(4-&0)
A

T @) 2 LR F

‘\> d(‘/> = C—V /L = (fasz,‘«,

The Fourier transform of sum distribution density function is a Gaussian. Therefore, the

original density function is a Gaussian (normal) distribution! Applying an inverse FT, and

, : S 2
using evenness of Gaussian functlons;o y l X / )\
g(x ) AT Ax = é
nr e C1svX dar

We have thus obtained the normal distribution. In the general form, we get:
L
o - (x-pM) 35+
5 = L.

i
Example: say we have a random variable 3 that depends on time. The density
function gives the probability of individual instantaneous values and si:rgzlé\wgive a
normal distribution.

Exercise: plot the amplitude density function of equal-amplitude, incoherent sine waves

- you should get a normal distribution.
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Note 1: the instantaneous range of values for many independent random processes
tends to a normal distribution. This statement says nothing about the spectral power
(i.e. frequency content) of the time-varying signal. If sample are uncorrelated in time

and are independent random processes, we get Gaussian white noise.

1(£) $¢) |

JZbQﬂVﬁA/VMAﬁ,\ N\ 1{/\\ N

7 7 °,

Note 2: a white power spectrum does not necessarily imply instantaneous values
following a normal distribution.

Note 3: the distribution of a sum of two random variables Q/ith equal expected values)
and normal distributions is also normal!

istributi 2
Normal distribution . (7( -, ) /.) o”"
Density function: { (‘(, s - A e

Lty

Distribution function: F ()( 3 - S)( '; (M)Jq = @(‘[——cﬁ‘ )

— 0

Probability to fall within limits Y = Lleor

le: 0.G35
fe: 0954
L 0,917+
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f(x) Fix) b

0.5

>

~30 -26 -6 0 ] 20 36 -20 -0 0 [} 26
(a) Mll)\, (b)

Figure 2-5 Normal (gaussian) distribution. (a) Density function.
(b) Distribution function.

Expected value: M(;) =0 since a Gaussian is even.
Expected value of half distribution: o J
_ n A _ _(_ "(/ )‘2 dx

M(z) - S ,(?(%) X = . x €

M), ) O-JR

. S .
S i =940

Including the absolute value of the negative axis, we get:
P
- : O yl
mIsry = X My = 987
—_—

We can calculate higher-order moments by differentiation of the characteristic function.
Here is the Fourier transform of a rl10|‘rmal distribution with zero mean and arbitrary 0~ :
e v/a
é(v) = e

We get the derivatives and hence moments as:

L 2 s
ﬁ = -gV c’“l/*l\ :BEJN‘
v lyz¢ V3o
1
2
ﬁ = o S-Mvu
Spring 2020
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3 <
b =0 =-3M
dv®
q
‘i.—j = Jo1= My

dv /'LW'\“' "

¢
A useful property of the normal distribution: ﬂv /IA:“ - g .
The previously derived properties for independent random variables still holds for

normally distributed random variables, and the sum variable is also normal.

Discrete distributions:
We will examine the binomial and Poisson distributions in more detail.
=) First, consider two sets of events that have exactly two, mutually exclusive outcomes.
Example: emission or non-emission of an electron from a vacuum-tube cathode.
—4Example: which of two electrodes receives an emitted electron.
Call f(A\ =P‘ the probability of the event occurring (say, electrode A is hit by the
electron). Probability of not occurring is P& =‘ ‘lol
We can define the values of random variable 5 as 3 = ’(; —,l in the first case,
and 5 < XL = O in the second case.

Expected value: /V\(‘;) = % Pl)(( - lf)l + O'/’k = P(

Variance:

X
pi(1) = MG - M(E)L N At

e |

).L

-y

AR e A0 R

9§
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Now repeat the experiment N times. The probability of the event occurring N times

and not occurring N"\ times is the product of individual probabilities if experiments

N-n
T I”)\ >/.L
N-N

are independent: ~ n
(WL

Since we don’t care about the particular order of the experiments, we count all the

ways N\ events can occur from /\/ total events as: (N )
n

e n N-n N N '
~ brAdMia
Thus, the probability is I)(/l - A) - (,4\/) /)) A « brao

which is the binomial distribution.
_

In terms of a sum random variable ,l , we have

. =0 )
Q: S("ﬁufgl\/ ()’! /
As the experiments are independent, we have

Mean Variance

M(a) = N ME5) = A2 ') =0 0B) =Nt

If p( cel and A z [ , then ok(/l) 2 M(’[)

v

. £ _ Mmlq)
But, if Pl"(l and Pa/i , then 0('[) - T 4

Limiting cases: if 40 and f 90 sothat Ny ’)\ , we get the Poisson distribution:

noo )(: ok swald Pre
Pla=n) = A o™ - ()

N’
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We can get moments of the Poisson distribution from the characterlstlc function:

)= 2 "N c” - “>‘ Z ()‘C’v)
N<o n(

n>o ,\l

AN N
Nt o A

‘'t

First derivative: L‘l6 B 3V )\(3‘/ ")J = jx = \/1'1 (’l)
Vv

| )/\C e
]

Second derivative: J ‘t

V=0 ~0

, = X -k A
&J U=y
Sin? , we get: M.‘w\ s
D (1) =My M ~ - (\, )\
Let’s consider a limiting case of the Poisson distribution for l‘VJc /\ =N ( oA
We use the Stirling formula: n
? N (1 TN c m

Substitute it into the Poisson distribution and take the log:

— I,\/) = <A lﬂ(f‘)*ﬂ#\ "';:Ltll '-l-(nam'

Use the identity  py = )\([.(. "\_>_ (|+ .4_") }\(I-M)

P

“aAR=-— .
and note that if /A is close to the mean >\ , then 4 << ‘ , SO that: l'\(( +°(,A A

U~

We can then write:

WP = _ a(+a)(a =% 1) + Aa ~phA

IS
Sa-La ) -t

&
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L 3 _( [ QP
_ -—i Xd & %.)J( 3% -(—‘10( I(AOITX)

AN An
A ,\,j e
8
<« U Aan 1 aA +d1 _1 &n
- = IT{' L)‘L(An - &r’f,nﬂrk
«0,,)..
Since AN (€ /\rbn 0 },we can neglect the middle two terms to get:

LY Y o/ )
ID(/I :"‘) "—J\TF)( < B 0(,,)‘[5— ¢
= Ix

Taking the continuous limit, we see the above is the density function of a Gaussian

distribution! Therefore, if 0(/)) LCM{’[J i.e. ( 1= )\5

0(’)) J > | )
R P
then the Poisson distribution can be accurately approximated by the normal
distribution in the vicinity of M(’)) . The condition is that /\ is sufficiently large
which means a sufficiently large average current. Typically in electronic devices these

conditions are satisfied, and so the instantaneous current values for shot noise follow a

normal distribution.

Binomial distribution: we now consider the case where P\ is not small, in the

vicinity of A = N,4 :Mﬁ) We have

p('liﬂ’j) :73’ - (N/:'/l) ! /’xN'W'
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N /zd ( I} )/"fu
i @/lBQ(N—NI,j‘, | -/ (/}-\HQU

k cc Npl

We will obtain the relative probability of ’) - ﬁ//tfk f , then

we need the extra terms (AI,‘ )‘/ =) (N/4 (,k)!
Similarly, (N ’Nfl)(, decreases by the terms (A ,N/() .- (N -—N/. ‘(k’[)) .

P _ /’(’Z:NML) ~ (A/ oy . (n-m1,-(E-) /4 >‘<
P, p(’l =N?.) Q//vll) . (N/,-rk | —¢

(c
Extract a factor of ( N -N ’l ) from each term in the top, and a factor of( A//’,) in the

bottom. These terms and the fraction term yield unity:

@ 'Nf/)‘L f‘k /Vl( ) l
(Nl. je (1 -n) N«
(~—

The remaining equation is:

o ((-Yow-w) - U= U”)/(”'Nﬁ))

—

fe 0“ ~/,>w\((+ ﬁ)

Take the log of this equation N,
— l«((--;\) CSu(1s 2
{n /lC = [" /0 N -wy, (2| An,

Use the assumption that I¢ ccNf| and the approximation of log: l«{ l<x) X
~——— U~—-—
We can perform these algebraic series to get:

) =P - ‘i(“_" kel )
[ 1y w7 T,

S - ket 1)
AN/, (l‘/’l)
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T N—

1 4
Note that o W/ /:(( ‘I’a) =3 (')) and that the numerator lc

(
(True exactly if /A =75 ).

l) e" “I/M‘('l)

We thus get: ‘0
C

-
-—

We can get e, with the help of the Stirling formula:

wte e ivw
N/l ] 'N(
A A Y

(N/NI‘)( = N”((‘/‘) ([Q/‘)N((‘/J C—ﬂ(‘-’,) J:):"’*N(l—fy

= N( (“(‘)d _L) oL “ \

(e ) (w-wr)t \ 17 o €

(a0 (i-0)

and so finally we conclude that for sufficiently high mean /\n(q) , the normal

distribution can be used in place of the binomial distribution. This approximation is

nearly always accurate in electronic devices.

Continuous distributions
Since electrons are discrete particles, strictly we should use discrete distributions.

However, due to the large number of charge carriers that compose typical electrical
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currents, we can approximate discrete distributions with continuous ones. Let’s

examine a few of these distributions.

Consider a uniform distribution. A continuous random variable & has a uniform

distribution if in the interval (ﬂ, Q) the density function is:

$e) L-a
Outside, 3 ()(330

Note: the density function typically has a physical dimension.

-
Example: voltage distribution would have units V

Consider a uniform distribution with zero expected value, limits ('“/ 0\\ .

Density function: .g_ (K) — _(_ aLrLA
da
Note that this function satisfies the requirement: 79 {’( X\L\X — ]
R
Variance and std dev:
L ~ A A — ‘1‘)\
o(3) = § x 52 Ix = =
3
-q
qQ Y
Fourth-order moment: - s XL‘ .L J X - f—
/"‘1 [ s

Kurtosis:

(j&vﬁhﬂ Spring 2020
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The next distributions have relevance for methods of measuring stochastic signals.
Example: in quadratic detection, the instantaneous voltage or current value is squared.
We would therefore like to know the distribution of instantaneous values, squared, as

well as the k-term sum distribution, obtained from the former distribution.

Start with a normal distribution of zero expected value, std dev o .

X
The probability that 3 £ ‘] is:

Flo)e (3 eq) = (-0 ¢y ¢ 0y)

Since normal distributions are symmetric about 0, we have:

Fly) = 2 (0w la = &(@(Q -9y

O (rmusﬁ;* n

The density function is:
= A—F - —é_ < A ‘El . J \/
£(4) 5T R 1| ) <!

This is known as a chi-square distribution with one degree of freedom (

If we have a random variable that is a sum of squared random variables ,7), - SL each

having the same normal distribution: - 51 A ¢ S(L

r
we get a X distribution with K degrees of freedom. The density function is:
(Q“) - “//lcr* lL-L AYl/,ld"‘
) = « o
.s:(c( ) ( e - X e - {QCXA)
{48 Plele) ok Y 1 (kfn) ol 1
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This result can be derived from the characteristic function. A
|

V-l x
f(v) is the generalization of the factorial function: /\(V) - ); Y ¢ dx

)
Expected value and std dev of the % distribution are obtained in the usual way:

M) =m0 €M) = km(s?)
0 ()= £ 0°) = k(MGY) -M1P))
We see the second- and fourth-order moments. Since 3 has a normal distribution,
0 (') =l (3= 0") = tio
and M(Y*) et
The relative std dev of the distribution is

I
If K is large, the Y distribution tends to the normal distribution.

0.4+
0.3

0.2‘ /(:A

2 R s R D) 12 14 TR e
Figure 2-8 »* distributions for squared sums having
different number of terms.
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For full-wave, piecewise linear detection, the distribution of the measured output signal
follows the distribution of ‘ 3 , f 3 has a normal distribution, density function of

has a distribution as:

g
' ot X CA

( > T Xh _ ’J\ -
Expected value: M(‘El) = o‘_ 7 ) Xt dx = T

® 2 4
Variance: 0"(( 5{) - é E Sb X‘ C—x/)" JX -~ %J‘l:(( -__il)d.L

We usually measure an averaged signal, and hence we care about the sum distribution:
/I :Isa“' .- ¥t [Blc.‘

e.g. a k-term sum. For a small number of terms, the distribution is complicated. For a

large number of terms, we get a normal distribution with

Expected value: M(q) N M((‘Sl) = kd};

Variance: DL("\ - [(,01““) any
- [C([ _ :_;r) 0")“ 81

Relative std dev:

o) _ (% L
— T -
8 (c
M(4)
T L ST
N 0: 7 T Figure 2-9 Distribution of absolute value
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A final problem: consider narrow-band noise with a low relative bandwidth Dﬁ’ . We
want the distribution of the envelope curve. We can consider the signal as a carrier of

frequency wo , Which is stochastically modulated in amplitude and phase. The

random variable is: )3(‘(-) < p(,") s (6«,"’ ¢ $(ﬁ)

The instantaneous values of envelope and phase angle are /)(H and C(’((“) .

We can write B("’) as: 5({') = o ((__) (‘5(&“{_) e P((') sh GJI"P

where o((f’) and b('” are mutually independent random variables with normal

distributions (if the original distribution is also normal).

Let (A(H and /7(1') have the common density function, ‘F("J") . Since they are
independent and normal, we have: '5'(016) = 5’[“) )((é)

g6l = (L O\ (e
Flost) o*ﬁrr\ ¢

Transforming to polar coordinates so the density function depends on gl 9 ,

_RYy A
9(&16) - L-fr_’a_;\ e /Ad‘

The function doesn’t depend on 9 , SO

$(R) = MTo(ke) <

Therefore, the single variable density function of the envelope curve is:
04

(R) ———

L Spring 2020
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which is a Rayleigh distribution. e

l'b‘/l\lou‘}ﬁ'l )(\m c"f\)r\)

The cumulative density function is ( é /()‘/& ~
- ¢
< 2 - &
c(R) ,70(,04/() | vy s
-R/)e
so that the probability of an envelope amplitude higher than is e— .
9] 2
Expected value: /V\(‘P) - S K , ﬁ e’ﬁ /lal JK - 1/—1_; - ‘;‘,LAS“O‘
6 i &
Variance:

OL(J’) - ﬂk‘/‘lL = dr - IEUL 2043 g

Relative std dev of a k-term sum:

0(2p) _ doy [ . 0545
M(%p)

(A5 Ik ('
Last distribution: the exponential distribution, defined by the density function:
0 Xto

7C(d :% At ko0

The distribution parameter )\ is an arbitrary positive number.

(“M A as
(o (‘)So/\) )

Distribution function:
o X £o

Fx): 2|-¢'“ X 20

Moments: M('S) . ,\~I

-X
M(3t) = +A

DL[ ?') - A’L Spring 2020
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Interesting property: assume 6; follows the exp distribution and represents a time
interval. Say we’ve waited 1 second for the event to occur. What is the probability it
takes another second? The value doesn’t depend on how long we’ve waited due to the

exponential function and definition of conditional probability. Exp is memoryless.

S
— -t
ES
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