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Microwave noise in semiconductor electronics 

Austin Minnich, California Institute of Technology

Spring 2020


Measurement and microwave electronics

Experimental physics and astrophysics relies on the ability to measure very small 
electrical signals. For various reasons, often these signals are in the microwave 
frequency domain (e.g. GHz - hundreds of GHz). One example:


This image was taken using an array of radio telescopes over the world.


An enabling technology for advancing science is therefore active electronic devices 
that amplify these weak signals. A workhorse device for microwave electronics is the 
low noise amplifier, based on various architectures of transistors.


You can buy them in a package like this:


The signal you care about goes in, and an amplified signal comes out. However, some 
amount of noise is unavoidably added.
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This class is about fluctuations in semiconductor microwave that impede the accurate 
measurements of weak signals. Thanks to Carlton Caves (see here) we know that 
quantum mechanics requires some amount of noise to be added even to a perfect 
amplifier. 


In practice, transistor microwave amplifiers add noise that is at least 5X that of the 
quantum limit. The goal of this class is to understand the microscopic mechanisms that 
lead to this extra noise and how they can be mitigated.


Noise mechanisms


Definition: Noise is defined as the fluctuation of a quantity of interest (e.g. voltage or 
current) from its mean value. It can be described by the theory of stochastic processes 
as we will discuss. 


The fluctuations have various underlying microscopic origins:


• 1/f noise - observed in many physical systems; its origin is still debated. The 
frequencies at which 1/f noise is important are much lower than microwave 
frequencies and so we won’t discuss this mechanism in detail.


• Generation-recombination noise - random transitions between the conduction 
band and trap states lead to fluctuations in the density of mobile electrons, thereby 
modulating the conductance of the semiconductor. This noise source is also only 
relevant below microwave frequencies and will not be discussed in detail.


• Thermal noise - arises from the thermal motion of mobile electrons. The Nyquist 
theorem relates the spectral noise power to the absolute temperature and the 
dissipative part of its conductance.


• Shot noise - originating from the fact that electric charge is carried by discrete 
particles (electrons). Its spectral intensity is proportional to the current.


• Hot electron noise - It is found that applying a field to an electron gas alters the 
spectral noise power from the zero field value (Johnson noise). The generic term for 
this noise mechanism is hot electron noise. We will extensively discuss this 
mechanism as it is quite important for transistor amplifiers.
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Mechanism of amplification and noise sources of a HEMT LNA
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Mechanism of amplification and noise sources of a HBT LNA


[Image: Alam/Purdue]


Actual layout:


[ecsdl.org]
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Noise characterization

[Hartnagel 1.5]


Fluctuating currents lead to emission of electromagnetic waves into a load. In 
experiment, it is easy to measure the power incident on a load. Therefore, the noise 
power is a key quantity. If the output impedance of the device and load impedance are 
matched, noise power -> available noise power.


Equivalent noise temperature 

The noise power in a band          can be compared to the power emitted by a 

blackbody at a temperature          . We can define the noise temperature as the noise 

power per unit bandwidth about a frequency             emitted into a matched load.


Mathematically:


In equilibrium, the noise temperature is just the physical temperature of the noisy 

element. The Nyquist theorem gives the relation between the spectral density of 

voltage fluctuations and temperature:


where             is the AC impedance of the noise source around a DC bias.


We will prove this later in the class.


Under non-equilibrium conditions, we can define a noise temperature that in general 

will depend on frequency:
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Another way to characterize noise is the noise figure           , defined as:


Note that the output noise power is referred to input, that is divided by the gain          

so that                              .


The noise figure depends on the relative values of the output impedance of the circuit 

and the load impedance. If the optimal load and bias are used, we get                 , 

which is independent of external considerations. For non-optimal circuits, four 

independent parameters are required to describe the two-port circuit. We will discuss 

these parameters later.


Modeling of noise in semiconductor devices

A common way to understand the noise performance of a device is to construct an 
equivalent circuit containing lumped two-terminal elements representing resistances, 
capacitances, controlled current sources, and so on.


Many of the necessary parameters are extracted from small-signal response 
experiments (S-parameters). Noise is represented as voltage and current generators at 
particular locations of the circuit.


Microscopic physical models help to understand the origin of the noise and the 
appropriate values for their lumped element description. Often, these models are 
based on a Boltzmann kinetic description (accurate provided all relevant device 
dimension are greater than a de Broglie wavelength). Noise can be computed using a 
microscopic theory of fluctuations for a weakly interacting many-particle system, just 
as response properties are computed for such a system using the Boltzmann equation. 


Note that the calculation of noise spectra in the non-equilibrium case is an 
independent problem from the calculation of response properties. Fluctuational 
properties provide new physical information about the system of interest. 


Drift-diffusion models are simplified equations obtained from the Boltzmann equation. 
When modified they can account for effects like electron and lattice non-equilibrium in 
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a phenomenological way. Noise can be computed from this approach by introducing 
Langevin forces.


This class will extensively focus on the Boltzmann-level treatment of noise in 
semiconductors and examine the role of band structure, intervalley scattering, and 
other factors in setting the noise.


An introductory example: shot noise 

[Ambrozy chap 1]


Consider electrons at a p-n junction. Applying a bias leads to electron injection across 
a barrier and a current.


For a given number of electrons that have enough energy to go over the barrier 
(determined by temperature and DC bias), there are different probabilities for different 
fractions to actually do so. Therefore there are fluctuations in the current from this 
random process.


We aim to calculate the spectral noise density of this random process. Start by 

considering an interval of time        . Take the number of electrons passing across the 
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barrier in this time to be          . For this thought experiment, we take the number of 

electrons in the starting side to also be              , and that they are distinguishable.


Divide the time interval into equal intervals of             . The number of electrons in 

intervals                          is                                    . Note that                        can be equal 

or different.


Now consider the probability for electrons 1, 17, and 23 (for example) to pass over the 

barrier, but no others, in a given time interval            ? The probability is given by 

whether those electrons do go over while all others do not. 


Since we have independent events, overall probability is probability those 3 electrons 

go over while all others do not.


P (go over)	 	 	 	 	 	 P (do not)


Overall probability:


But actually electrons are not distinguishable. From binomial theory, there are                  

ways to select              electrons out of               total. Therefore, we get the binomial 

distribution:


We now take the limit of       


but holding fixed
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           gives the average number of electrons passing in time           .


The distribution becomes:


Second factor:


Third factor:


Fourth factor:


Overall result:


This is the Poisson distribution.                 tells us the probability for             electrons to 

pass over the barrier in time interval              .


Note that it is not continuous in           since electrons come in integer numbers.


Also the key approximation here is that                   . It is not always true!
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Now let’s compute the fluctuation in the value of          . 


The mean of                    is obtained by:


The variance of                 is:


We get the well-known result that for the Poisson distribution, the mean and variance 

are equal. 


Let’s now see how these statistical considerations translate to current noise. The 

instantaneous current in time interval               is:


The mean current value is:


The mean square of current fluctuations, directly proportional to noise power, is:
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To turn this into the conventional Schottky formula, use the handwaving argument that            


          is on the order of the bandwidth                 . Then we get:


where the factor of 2 accounts for positive and negative frequencies.


In practice, physical processes (like transit time of electrons through a vacuum gap, 

etc) limit the bandwidth to some finite value, even assuming infinite bandwidth 

electronics.


Some terminology

Amplitude density 


The instantaneous current flowing through a device can be written as:


This decomposition is not that useful for stochastic processes since we generally don’t 

know the exact             in advance. We can instead compute probabilities for            to 

be between                    


                         to get the amplitude density function:
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Its dimension is                     . We can also get an amplitude density function for 

voltage,                 , with units               .


For shot noise,                  is also a Poisson function since              is proportional 

to      :


Exercise: compute the amplitude density function for sin(x).


Power density 

Since we have the mean square of current fluctuations, we can define a noise power:


The power density is the power per unit bandwidth. For shot noise, we have:
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We see that for shot noise the spectrum is white, or frequency-independent. In general,


We often calculate                         , and leave them in that form. Therefore we define 

the spectral density of current fluctuations:


We can also define rms noise current and voltage:


Note that we can only draw conclusion about the power spectra from the above 

discussions, not the noise or current spectra.


Elements of probability - distributions and density functions

[Ambrozy Chap 2]


In general, we don’t know the exact signal originating from a stochastic process. 
However, we can predict the probabilities of instantaneous values from an 
understanding of the microscopic origin.


Some terms:


A random trial is an event with a non-unique outcome.


Elementary events = possible outcomes. Mathematically, a possible event is a subset 

of a set          containing the elementary events, which is known as an event space.


Kolmorogov axioms: a probability function             is defined on subsets of          if:


Spring 2020

p pCf i p pCw paffp.CH def
frequent at total noise

voltage

S Scf A4HzivYHz

S Sla AYnadst V'lads

irons Ti g urns _TUT

roll a dice

or

MA r

OEp A El p Acc AAH

per L



MCE 201, APh 250/Minnich Module 1 Page  of 14 38

if                        are mutually exclusive (either finite or infinite series is ok).


A random variable can be defined as a real function over the set              .


Calling the elementary event             , we call the real number characterizing the 

elementary event as             . Interpretation:           tells us the numerical result of a trial.


Example: consider electrons passing over a barrier. The i-th event is            electrons 

passing over the barrier. Here the random variable is also             .


But, if two barriers are connected in parallel and we measure the total current, the 

relevant random variable is                    , and various combinations of elementary 

events (individual           ) are relevant for the random variable             .


Distributions 

Now let’s define a stochastic process: a single parameter assembly of random 

variables,           ,    where the parameter          continuously covers the time set.


Example:            (defined in the previous example) is a function of time as a parameter 

and is composed of a random variable defined on two event spaces.


We can now define a distribution function            of a random variable         . 


It gives the probability of          having a value less than          .


Properties:


1. Monotonically increasing


2. Limiting values of 0 and 1:
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3. Continuous from the left:





From the definition, the probability that                                          


Discrete and continuous distribution functions can be defined.


Discrete: the possible values of            are a finite or infinite series. 


Define                           so that the distribution function is:


As                  , the sum of             tends to unity.


Continuous: a distribution is continuous if a function                         exists so that
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We can define discrete probabilities             and density function                 as:


	 Discrete	 	 	 	 	 	 Continuous


Although the density function of a discrete function is not strictly defined, it can be 

approximated by a continuous function for sufficiently large measurement numbers:


Here             is the uniform increment of the random variable (voltage, current, etc..)


We actually already did this conversion when we derived the Poisson distribution.


Expected value and standard deviation 

For a discrete distribution, we have values                      with probabilities                .


Expected value is:


Notation: 


For a continuous distribution,


where we require that 


            is often referred to as the first-order moment of the distribution.


Some properties:


Homogeneity		 	 	 	 Additivity
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If we have two statistically independent random variables, then


This condition is satisfied if the joint probability, defined as:


has the density function that separates:


We can also characterize the fluctuations of the random variable about the mean. We 

introduce the standard deviation:


It is also described as the square root of the expectation value of                  .


We can rewrite the definition in a more convenient form:


Hence the variance,            , is also the difference between the expectation value of the 

random variable squared, and the squared expected value.


Side note: in practice, using the first formula can be numerically preferable. Say we 

have some error           in our knowledge of the true expected value. Then,


On the other hand, using the other formula,
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The error is higher in this case since                                                      


If we know the density function, we can compute the variance:


Discrete:


Continuous:


Writing the continuous formula in another way:


Here             is the second-order moment.


Some properties:


Effect of scaling and shift.


So standard deviation is multiplied by               but additive term leaves it unchanged.


Variance of mutually independent random variables (proof to do in HW):


From this result, we see that if independent random variables have equal variance, then
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Higher-order moments can be defined as


Higher-order moments tell us about asymmetrical features of the density function. The 

third-order moment is tells us about skewness, fourth-order tells us about kurtosis 

(nature of the tail of the distribution).


Characteristic functions and sum distributions  

The characteristic function is the Fourier transform of the density function. Definition:


Expected value:


Continuous distribution:


We can Fourier transform back using:


Some properties:


1. If           ,                    , since                                  . If           , one can show that        


2. If          is even,               is real. Otherwise,                                    .
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Derivatives:


So we can get moments of the density function from derivatives of                 .


With the characteristic function, we can compute the sum distribution of random 

variables. It is useful because in devices several noise sources are present 

simultaneously.


Define the random variable of the sum distribution as:


where                  are mutually independent. Then,


due to mutual independence. So, the Fourier transform of sum distribution density 

function is the product of the individual characteristic functions.


Consider a two-term example:


Define the density functions as
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The characteristic function for             is just                          .


Using the properties of Fourier transforms to go back to a density function, we get


Another way to see it: the joint probability for independent events is given by the 

project                               . But since we care about the value of the sum random 

variable, defined as            , we have                 . We then need to add up all the 

possible ways to get          , i.e. integrate for continuous density functions.


Example: say we have two dice, and the sum random variable is the sum of the 

numbers that we see. The probability of any number on one dice is           .


Probability to get 2 or 12?


Probability to get 5? Rewriting convolution equation for a discrete probability:


HW: try the calculation for 3 dice.


Central limit theorem 

The noise we measure is often a sum of random phenomena with the same 

distribution. Can we figure out the sum distribution, even if the number of components 

is large and perhaps not known?


The central limit theorem tells us that the sum distribution follows a normal distribution 

as the number of independent random variables tends to infinity.


Derivation: define                             as mutually independent random variables with 

expected value = 0, std dev =            , skewness                  . (not required but helpful)
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The sum random variable is:


Expected values of sum: 


Variance of sum:


We also have:


Define a normalized sum random variable as:


Then: 


Now let’s write the characteristic function of the normalized sum distribution:


We can expand the function                  using the definition of characteristic function:


Since                       and                         , we have
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The sum characteristic function is given as a product of               . Let’s take a log of it 

to turn the products into sums. We need the logs of individual characteristic functions, 

and let’s take the limit as                  , to get


Therefore, 


The Fourier transform of sum distribution density function is a Gaussian. Therefore, the 

original density function is a Gaussian (normal) distribution! Applying an inverse FT, and 

using evenness of Gaussian functions:


We have thus obtained the normal distribution. In the general form, we get:


Example: say we have a random variable             that depends on time. The density 

function gives the probability of individual instantaneous values and should give a 

normal distribution.


Exercise: plot the amplitude density function of equal-amplitude, incoherent sine waves 

- you should get a normal distribution.
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Note 1: the instantaneous range of values for many independent random processes 

tends to a normal distribution. This statement says nothing about the spectral power 

(i.e. frequency content) of the time-varying signal. If sample are uncorrelated in time 

and are independent random processes, we get Gaussian white noise.


Note 2: a white power spectrum does not necessarily imply instantaneous values 

following a normal distribution.


Note 3: the distribution of a sum of two random variables with equal expected values 

and normal distributions is also normal!


Normal distribution 

Density function:


Distribution function:


Probability to fall within limits                   ?
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Expected value:                    since a Gaussian is even.


Expected value of half distribution: 


Including the absolute value of the negative axis, we get:


We can calculate higher-order moments by differentiation of the characteristic function.


Here is the Fourier transform of a normal distribution with zero mean and arbitrary      :


We get the derivatives and hence moments as:
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A useful property of the normal distribution:


The previously derived properties for independent random variables still holds for 

normally distributed random variables, and the sum variable is also normal.


Discrete distributions: 

We will examine the binomial and Poisson distributions in more detail.


First, consider two sets of events that have exactly two, mutually exclusive outcomes.


Example: emission or non-emission of an electron from a vacuum-tube cathode.


Example: which of two electrodes receives an emitted electron.


Call                     the probability of the event occurring (say, electrode A is hit by the 

electron). Probability of not occurring is                      .


We can define the values of random variable            as                in the first case,


and                          in the second case.


Expected value:


Variance:
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Now repeat the experiment          times. The probability of the event occurring      times 

and not occurring           times is the product of individual probabilities if experiments 

are independent:


Since we don’t care about the particular order of the experiments, we count all the 

ways          events can occur from            total events as:


Thus, the probability is


which is the binomial distribution.


In terms of a sum random variable            , we have 


As the experiments are independent, we have


	 Mean	 	 	 	 	 	 Variance


If               and                  , then 


But, if              and               , then                        


Limiting cases: if              and               so that              , we get the Poisson distribution:
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We can get moments of the Poisson distribution from the characteristic function:


First derivative:


Second derivative:


Since                     , we get:


Let’s consider a limiting case of the Poisson distribution for


We use the Stirling formula:


Substitute it into the Poisson distribution and take the log:


Use the identity


and note that if      is close to the mean          , then                  , so that:


We can then write:
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Since                                       , we can neglect the middle two terms to get:


Taking the continuous limit, we see the above is the density function of a Gaussian 

distribution! Therefore, if                          , i.e.


then the Poisson distribution can be accurately approximated by the normal 

distribution in the vicinity of               . The condition is that           is sufficiently large 

which means a sufficiently large average current. Typically in electronic devices these 

conditions are satisfied, and so the instantaneous current values for shot noise follow a 

normal distribution.


Binomial distribution: we now consider the case where                is not small, in the 

vicinity of                          . We have
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We will obtain the relative probability of                          . If                                 , then          

we need the extra terms                


 Similarly,                         decreases by the terms                                        


Extract a factor of                    from each term in the top, and a factor of           in the 

bottom. These terms and the fraction term yield unity:


The remaining equation is:


Take the log of this equation


Use the assumption that                and the approximation of log:


We can perform these algebraic series to get:
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Note that                                                 and that the numerator                     . 


(True exactly if                    ). 


We thus get:


We can get             with the help of the Stirling formula:


and so finally we conclude that for sufficiently high mean               , the normal 

distribution can be used in place of the binomial distribution. This approximation is 

nearly always accurate in electronic devices.


Continuous distributions 

Since electrons are discrete particles, strictly we should use discrete distributions. 

However, due to the large number of charge carriers that compose typical electrical 
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currents, we can approximate discrete distributions with continuous ones. Let’s 

examine a few of these distributions.


Consider a uniform distribution. A continuous random variable          has a uniform 

distribution if in the interval                the density function is:


Outside,                            .


Note: the density function typically has a physical dimension. 


Example: voltage distribution would have units                  .


Consider a uniform distribution with zero expected value, limits                        . 


Density function:


Note that this function satisfies the requirement:


Variance and std dev:


Fourth-order moment:


Kurtosis:
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The next distributions have relevance for methods of measuring stochastic signals.


Example: in quadratic detection, the instantaneous voltage or current value is squared. 

We would therefore like to know the distribution of instantaneous values, squared, as 

well as the k-term sum distribution, obtained from the former distribution.


Start with a normal distribution of zero expected value, std dev            .


The probability that                       is:


Since normal distributions are symmetric about 0, we have:


The density function is:


This is known as a chi-square distribution with one degree of freedom (                   ).


If we have a random variable that is a sum of squared random variables              each 

having the same normal distribution:


we get a           distribution with         degrees of freedom. The density function is:
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This result can be derived from the characteristic function.


             is the generalization of the factorial function:


Expected value and std dev of the          distribution are obtained in the usual way:


We see the second- and fourth-order moments. Since          has a normal distribution,


and


The relative std dev of the          distribution is


If              is large, the              distribution tends to the normal distribution.





Spring 2020

Mul rut fax e dx

Xt
mail email t t M si KM H

p CH k DH't k MCM Mls

3
D x'I K 304 04 dko't

M rt Koh

k y



MCE 201, APh 250/Minnich Module 1 Page  of 35 38

For full-wave, piecewise linear detection, the distribution of the measured output signal 

follows the distribution of              . If        has a normal distribution, density function of    

has a distribution as:


Expected value:


Variance:


We usually measure an averaged signal, and hence we care about the sum distribution:


e.g. a k-term sum. For a small number of terms, the distribution is complicated. For a 

large number of terms, we get a normal distribution with 


Expected value:





Variance:


Relative std dev:
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A final problem: consider narrow-band noise with a low relative bandwidth            . We 

want the distribution of the envelope curve. We can consider the signal as a carrier of 

frequency           , which is stochastically modulated in amplitude and phase. The 

random variable is:


The instantaneous values of envelope and phase angle are            and              .


We can write              as:


where               and                 are mutually independent random variables with normal 

distributions (if the original distribution is also normal).


Let              and             have the common density function,              . Since they are 

independent and normal, we have:


Transforming to polar coordinates so the density function depends on                   , 


The function doesn’t depend on         , so


Therefore, the single variable density function of the envelope curve is:
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which is a Rayleigh distribution. 


The cumulative density function is


so that the probability of an envelope amplitude higher than          is        


Expected value:


Variance:


Relative std dev of a k-term sum:


Last distribution: the exponential distribution, defined by the density function:


The distribution parameter            is an arbitrary positive number.


Distribution function:


Moments:
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Interesting property: assume           follows the exp distribution and represents a time 

interval. Say we’ve waited 1 second for the event to occur. What is the probability it 

takes another second? The value doesn’t depend on how long we’ve waited due to the 

exponential function and definition of conditional probability. Exp is memoryless.
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