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Lecture 1: Quantum simulation
Reading: Quantum simulation, I. M. Georgescu, S. Ashhab, and Franco Nori, Rev. Mod. Phys. 86,
153 (2014).

1 Introduction
Recent advances in physical hardware for various types of quantum devices (e.g. quantum annealing
as in DWave or gate-based quantum computers by Google, IBM, Rigetti, etc) have received tremen-
dous attention in the past 5 years or so [1]. Of course, the quantum information and computing
fields have been active for around 40 years since the original papers by Benioff [2], Feynman,[3] and
Deutsch [4] describing computation with quantum rather than classical degrees of freedom. The
past 20 or so years have seen substantial increases in the size of the quantum information commu-
nity following the introduction of Shor’s algorithm for factoring prime numbers with exponential
speedup compared to the best known classical methods.

Partly because of that seminal result, the QI community has attracted scientists from many
fields including mathematics, computer science, and physics, to work on problems of what I would
argue is a computer science flavor, e.g. Simon’s algorithm for identifying hidden subgroups, combi-
natorial optimization, cryptography, communication and others. Caltech has a number of courses
on these topics (e.g. quantum cryptography, and a general quantum computing course). Quantum
information is also gaining attention for the applications of its concepts to black holes.

What is not as well covered in terms of courses is the use of QC for one the earliest suggested
purposes: as a tool to study and learn about other quantum systems, or a quantum simulator. This
concept was originally proposed by Benioff and Feynman as a way to overcome the exponential
explosion in the size of Hilbert space with the number of particles, which is the origin of the
intractability of exactly describing quantum systems with classical computers. Further, much of
the work performed by the QI community assumes the existence of an error-corrected quantum
computer with non-trivial numbers of logical qubits. Presently, of course, we have relatively small
numbers of imperfect physical qubits operated on by imperfect gates. What problems in physics
might we solve with these early-stage quantum computers?

This course aims to provide the relevant background for quantum computing and then present
a selection of recent results of algorithms that may be suitable for near-term quantum computers.
Whether they will actually prove useful to solve a physically relevant problem that could not be
solved by other means is not yet clear. But, we should have answers in the 5 year timeframe!

1.1 Problem statement
Our general goal is to solve the governing equations for a quantum system and compute relevant
quantities from this solution such as identifying the lowest energy state (the ground state), thermal
averages, correlation functions, and so on. As a common example, a problem statement is to solve
the Schrodinger equation:

i
d |ψ〉
dt

= H |ψ〉 (1.1)

where H is the Hamiltonian operator and E is the energy of the eigenstate ( we set h̄ = 1). The
general solution of this equation is:

|ψ(t)〉 = e−iHt |ψ(0)〉 = U(t, 0) |ψ(0)〉 (1.2)
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If we have N spin-1/2 particles, we need 2N complex numbers just to specify the state. To figure
out the time evolution, we need to exponentiate a 2N × 2N matrix. The threshold for the exact
calculation of this time evolution on a classical computer is around 40 spins, which in single precision
requires 4 TB of memory. For 80 spins, we would need 3.8 × 1025 bits which is more information
than has ever been stored by humans! [5]

Now, a standard approach to overcome computational challenges associated with large phase
spaces is using stochastic methods like quantum Monte Carlo. Although this method does work well
for some problems, mapping fermions and some other systems to the classical stochastic problem
leads to the presence of nonpositive semi-definite weights, known as a sign problem. Solving this
problem is NP-hard, meaning a general solution is classically intractable. [6]

However, in many cases there are clever approximate methods that make use of the physical
structure of the system. For instance, for weakly correlated systems we know that an approximate
wavefunction for the system (e.g. a Slater determinant) or density-based approaches like density
functional theory do very well. As another example, we know that for 1D systems certain types of
Hamiltonians have restricted entanglement, enabling their near exact, efficient classical description
using the matrix product state ansatz. At this point in time, after nearly 100 years of study
of the electron gas and other quantum systems, the remaining problems like the origin of high-
Tc superconductivity, problems in particle physics, and so on, are hard problems that are not
amenable to the above approximations. Progress in classical algorithms is certainly still advancing,
particularly for relatively newer approaches like tensor networks, but it is natural to wonder about
the application of another tool to these tough problems, e.g. a quantum simulator.

1.2 Quantum simulation
Quantum simulation is defined as the use of a controllable quantum system to emulate the interac-
tions and evolution of another quantum system. Say the state of a system to be simulated is |ψ〉
and it evolves from |ψ(0)〉 to |ψ(t)〉 by unitary evolution. The propagator that implements this time
evolution is

U = e−iHsyst (1.3)

Now suppose we have a quantum simulator that is controllable: we can prepare |φ(0)〉, implement
a propagator U ′ with Hsim, and find a final state |ψ(t)〉 that can be measured with some observables.
The original system can be simulated if a mapping exists between |ψ〉 and |φ〉. Note that the key
property of quantum simulators is their ability to store exponential information in polynomial
physical memory. This property is certainly desirable not not sufficient for quantum simulation:
we also need efficient methods to prepare initial states, evolve the system, and measure desired
quantities with polynomial resources.

Analog quantum simulation (AQS)

A general purpose quantum computer is practically very difficult to build owing to decoherence
of physical qubits, imperfect gates, and numerous other challenges. An alternate approach that
has seen great success over the past 20 years is the use of quantum systems with some degree of
control over the interactions of the quantum degrees of freedom to imitate other systems - an analog
quantum simulator (AQS). The most obvious example of such a quantum simulator is an ultracold
atoms confined in an optical lattice or by other means so that the atoms experience an external
potential with some interactions. Fortuitously, the Hamiltonian describing the atoms in this system
overlaps nicely with the Hubbard model, and the appropriate statistics (Bose or Fermi) can be
selected by choosing the right type of atoms.
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More precisely, in AQS Hsys is mapped directly onto Hsim which is partially controllable. As an
example, consider that we have atoms in an optical lattice with interactions that can be tuned with
external light pulses. A gas of interacting bosonic atoms in a periodic potential has the Hamiltonian:

Hsim = −J
∑
〈i,j〉

a†iaj +
∑
i

εini +
1

2
U
∑
i

ni(ni − 1) (1.4)

which is very similar to a Bose-Hubbard model which is of interest in condensed matter physics.
Therefore, phenomena related to e.g. superconductivity can be studied with ultracold atoms in an
optical lattice as an AQS. Ultracold gases have been used in numerous papers to study a wide-range
of phenomena, including quantum phase transitions, quantum dynamics, many-body localization,
and other topics.

As another example, consider the Dirac equation in 1+1 dimensions for a spin-1/2 particle with
mass m:

i
∂ |φ〉
∂t

= (cp̂σx +mc2σz) |φ〉 (1.5)

The Hamiltonian of a single trapped ion in a bichromatic light field is:

HI = 2η∆Ω̄σxP̂ + Ωσz (1.6)

where η is the Lambe-Dicke parameter, ∆ is the spatial extent of the ground-state wavefunction,
and Ω̄ is a parameter controlled by the light field. Noticing the similarity, we see that by tuning
the light field we can study relativistic physics with a non-relativistic particle!

Clearly, these forms of analog quantum simulators are already quite capable, and their abilities
continue to grow. Why would we like a general purpose quantum computer based on gates and
qubits? We can identify a few reasons that are analogous to why our current digital classical com-
puters are so powerful and displaced analog classical computers. First, analog quantum simulators
are restricted in what Hamiltonians they can simulate and the experimentally accessible parameters
of those Hamiltonians. For instance, atoms in an optical lattice naturally possess a Hamiltonian
similar to that of the Hubbard model and so we are able to study the physics of that model. If we
want to study an entirely different model, or have interactions that are not naturally mappable to
the interactions of the atomic system, we need to do a lot more work to modify the setup of our
simulator, if it is possible at all.

Second, general-purpose quantum computers offer a degree of control over the quantum state
of the device and the interrogation of that state that is not possible with typical optical lattice
setups. In an AQS, we can apply Hamiltonians to the atomic system, change parameters and
induce dynamical processes, and observe those processes with imaging. In this typical procedure,
we are unable to specify the quantum state of an individual atom nor measure arbitrary expectation
values of operators for atoms in the lattice. Quantum computers thus offer an unparalleled degree
of quantum control that in turn allows us to simulate quantum systems and measure observables
that are not possible with AQS.

Digital quantum simulation

Digital quantum simulation is based on the circuit model we will discuss extensively in the course.
The wavefunction is encoded in bit strings in a register of qubits. To perform time evolution, we
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apply U in a series of 1 and 2-qubit gates. Now, any unitary operation (e.g. U) can be expressed with
a universal gate set of 1 and 2-qubit gates but not necessarily efficiently - an exact decomposition
requires exponential circuit depth! However, finite local Hamiltonians can be efficiently simulated
as shown by Lloyd (and we will discuss in the next lecture).

Finally, we need to measure the properties of the wavefunction at the end of the time evolution.
Naively, we would say we want to fully characterize the wavefunction so that we can computer
any property we want. Unfortunately this process, known as quantum state tomography, requires
exponential resources. Therefore, we will not have access to the full wavefunction generally and will
have to choose observables that can be efficiently measured with polynomial resources.

What problems can be treated on these computers? The standard Schrodinger equation is by
far the most common and so we focus on it in this class. However, many other problems are being
considered to be treated on a DQS (I will just call this a quantum computer, or QC), including
the Sachdev-Ye-Kitaev model for quantum gravity, lattice gauge theories, cosmology, information
scrambling in black holes, and more! The Hamiltonians of interest can take many forms, e.g.
spin models like the Heisenberg and Ising models, approximate electronic structure models like the
Hubbard model, full electronic Hamiltonians as occur in quantum chemistry and computational
materials science, and others. As we will discuss in detail later, in general the computational
complexity to find certain properties to some specified precision for these Hamiltonians is “hard” -
e.g. NP complete classically and QMA-complete for quantum computers. So quantum computers
will not be a magic bullet to solve interesting quantum problems - we will usually need some type of
physical knowledge or approximation to make the problem tractable even on a quantum computer.

Interestingly, simulating the transient behavior of a quantum system with a given Hamiltonian
is in the complexity class BQP (analogous to P for classical computers) meaning that it is tractable
on a quantum computer. The same task is generally not possible on a classical computer due
to exponential memory requirements. Therefore, any exact quantum computation on a classical
computer is generically “hard” but certain calculations on a quantum computer are tractable. In
addition, on a quantum computer we are able to store an exact quantum state with polynomially
many qubits, and so our memory capabilities are dramatically enhanced compared to those of
classical computers. These observations provide a motivation for trying to understand precisely
how a quantum computer could be helpful to study a quantum system compared to what is possible
with a classical computer.

1.3 State of present hardware for DQS
In the past 5 years, rapid development in the hardware for a general-purpose QC has occurred. Many
companies are investing substantially in various architectures including superconducting qubits, ion
traps, and others. Presently, these systems have on the order of tens of qubits. I will focus on the
specifications for the superconducting qubit systems as I am most familiar with those. The typical
coherence times of the qubits are on the order of 50 µs. Gates can be applied at a rate of 100 MHz
and with fidelities of > 95% for 1 qubit gates and > 90% for 2 qubit gates. Readout errors are
order of a few percent. Note that some companies report much better specs but their hardware
is not publically available yet, and so the numbers are hard to confirm. In addition to the errors
and decoherence challenges, cross-talk can be a significant source of inaccuracy as well. Cross-talk
occurs if applying a gate to one qubit induces a change in the state of another qubit.

Considering all these numbers, it is clear that near-term devices can likely execute only order
50 gates before one is simply processing noise. The number 50 comes from either the decoherence
time of the qubits and the rate at which gates can be applied, or the success probability of applying
gates with a non-unity fidelity (e.g. 0.9950 = 0.6, so after 50 gates we are close to getting the
correct outcome only a bit more than half the time). These numbers are not likely to get orders of
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magnitude better, either. A key target for error correction is 99.9% fidelity for the two-qubit gate
and better than that for 1 qubit gates and readout, with sufficiently small cross-talk. Even if those
numbers are achieved, we can apply < 500 gates before noise dominates, a number that is certainly
better than 50 but nowhere near the estimates of the number of gates needed for, e.g. quantum
chemistry, which are on the order of millions. The real advantage of realizing those fidelities is that
error correction with a surface code can be performed with around 1000 physical qubits per logical
qubit.

These observations also imply that simply increasing the number of qubits is not helpful beyond
a certain number, because qubits provide a quantum advantage only if they can be entangled.
We can only generate enough entanglement for the overall system if we can apply a sufficient
number of two-qubit entangling gates, which as we have just seen is limited in present devices.
Further, actual devices typically have only nearest-neighbor connectivity, limiting which qubits
can be entangled without additional SWAP gates being required to place qubits adjacent to each
other. This consideration leads to the idea of “quantum volume,” which describes the capability
of a quantum device in terms of the number of qubits along with the number of gates that can
be applied with sufficient fidelity, connectivity, and the number of operations that can be run in
parallel. All of these factors determine what algorithms can be run on a given device.

Therefore, the challenge for doing physics on near-term quantum computers is finding how to
obtain a result that cannot be simulated classically given all of these restrictions that are quite
severe. It is entirely possible the answer is that no such applications exist with present devices.
However, the hardware is improving rapidly, and it is not unreasonable to think that in 5 years
that answer may be different. With that in mind, the goal of this course is to introduce recently
introduced algorithms that solve quantum problems in chemistry and physics that could be run
on near-term devices, but perhaps will not surpass classical capabilities right now. But we will be
prepared when the hardware advances sufficiently that the situation changes.
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